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The paper presents an advanced control strategy that uses the neural network predictive controller and the 

fuzzy controller in the complex control structure with an auxiliary control variable. The controlled tubular 

heat exchanger was used for pre-heating of petroleum by hot water. The heat exchanger was modelled as 

a nonlinear system with interval parametric uncertainty. The set point tracking and the disturbance 

rejection using intelligent control strategies were investigated. The control objective was to keep the outlet 

temperature of the pre-heated petroleum at a reference value. Simulations of control of the tubular heat 

exchanger were done in the Matlab/Simulink environment. The neural network predictive control (NNPC) 

with fuzzy controller was compared with classical PID control. Simulation results obtained using NNPC 

with fuzzy controller and those obtained by classical PID control confirmed the effectiveness and 

superiority of the presented advanced control approach. 

1. Introduction 

Predictive control is recently the most widely implemented advanced process control strategy in industrial 

applications. The robust model predictive control represents one of approaches, which enable to design 

effective control algorithms for optimisation of the control performance as well as to take process 

uncertainty into account (Bakošová and Oravec, 2013). Model-based predictive control refers to a class of 

algorithms that optimise future behaviour of a plant and the process model is used for prediction of future 

process outputs (Darby and Nikolaou, 2012). The MPC technology can now be found in a wide variety of 

applications (Keshavarz et al., 2010).  

Fuzzy control is nowadays successful control approach to complex nonlinear systems or even nonanalytic 

ones. Fuzzy logic controllers have the advantages over the conventional controllers: they are cheaper to 

develop, they cover a wider range of operating conditions, and they are more readily customizable in 

natural language terms. Fuzzy control has been suggested as an alternative approach to conventional 

control techniques in many situations. Salmasi classifies and overviews the state-of-the-art control 

strategies for hybrid electric vehicles (Salmasi, 2007). The design of the controller based on the use of a 

finite-dimensional approximate model,of high order, derived by spatially lumping the infinite-dimensional 

model of the heat exchanger is described in (Maidi et al., 2008). Fuzzy logic controllers have been 

implemented successfully in a variety of applications. In (Hladek et al., 2009), multi-agent control system 

based on a fuzzy inference system for a group of two wheeled mobile robots executing a common task is 

proposed. Wakabayashi describes procedures related to the application of PI fuzzy control in a semi-batch 

reactor for the production of nylon 6 (Wakabayashi et al., 2009). Hayward and Davidson illustrate the 

power of fuzzy logic through a simple control example (Hayward and Davidson, 2003). In Peri and Simon 

(2005), a fuzzy logic control of the motion of differential drive mobile robots has been presented.  In 

Mendes et al. (2014), a new method for automatic extracting all fuzzy parameters of a Fuzzy Logic 

Controller in order to control nonlinear industrial processes is proposed. A major contribution of fuzzy logic 

is its capability of representing vague data (González et al., 2013). In Markowski and Siuta (2013), a 

general framework for dealing with uncertainties in each stage of consequence modelling is presented.  
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Figure 1: Scheme of the tubular heat exchanger 

2. Process description 

Consider a co-current tubular heat exchanger (Vasičkaninová et al., 2011), where petroleum is heated by 

hot water through a copper tube (Figure 1).  

The controlled variable is the outlet petroleum temperature T1out. Among the input variables, the hot water 

flow rate q3(t) is selected as the control variable. The mathematical model of the heat exchanger is derived 

under some simplifying assumptions (Vasičkaninová and Bakošová 2012).  Parameters and steady-state 

inputs of the heat exchanger are given in (Vasičkaninová and Bakošová 2012).  
For the identification, the step changes of the inlet mass flow-rate of the heating water were generated. 

According to these step changes, the heat exchanger is a time-delay nonlinear system with asymmetric 

dynamics. The model was identified using the Strejc method (Mikleš and Fikar, 2007) from the step 

responses in the form of the n
th
 order plus time delay transfer function in Eq(1). 
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As several step responses were identified, intervals were obtained for the gain K, the time constant , the 

time delay D and the heat exchanger was represented as the 3
rd

 order system with interval parametric 

uncertainty. The nominal values of the parameters are mean values mean = 19.5 s, Dmean = 1.5 s and Kmean 

= 5.3510
4 

°C m
-3

 s.  

3. Control of the heat exchanger 

3.1 PID Control of the heat exchanger 
PID controllers described by the transfer function 
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with kp the proportional gain, ti the integral time and td the derivative time, were tuned using the Cohen-

Coon method (Ogunnaike and Ray, 1994) and the Strejc method (Mikleš and Fikar, 2007) for the nominal 

model in the form Eq(1). 

The PID controller parameters obtained using the Cohen-Coon formulas are kp = 1.1910
-4

, ti = 35.44 s, td 

= 4.55 s and those obtained using the Strejc formulas are kp = 4.3210
-5

, ti = 48.1 s, td = 12.64 s. 

3.2 Neural network predictive control of the heat exchanger 
Model-based predictive control (MBPC) includes a broad variety of* control methods that comprise certain 

common ideas. A process model is explicitly used to predict the process output ŷ  for a fixed number N of 

steps into future and the predictions are calculated based on information up to time k and on the future 

control actions. A future reference trajectory is known. A receding strategy is used, i.e. only the first control 

signal u(k) of the calculated sequence is applied to a controlled process. The standard cost function can 

have the form Eq(3).  
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where Nu is the control horizon, Nmin and Nmax are the minimum and maximum prediction horizons 

respectively, yr is the reference trajectory, ŷ  is the predicted controlled output, , P are the weight factors, 

and u is the sequence of the future control increments that have to be calculated. The cost function is 

minimized in order to obtain the optimum control input that is applied to the non-linear plant. The control 

input u may be constrained: umin ≤ u(k+j) ≤ umax; j = 1, 2, …, Nu. The length of the control horizon Nu must 

satisfy following constraints: 0 < Nu ≤ Numax . The value of Numax  should cover the important part of the step 

response curve. The role of the coefficient  is to scale the second sum of squared control increments 

against the first sum representing squared predicted control errors. P scales the predicted controlled 

output against the reference signal. The output sequence of the optimal controller is obtained over the 

prediction horizon by minimizing the cost function J with respect to the vector of control inputs. The 

reference trajectory is assumed to be known. If it is not the case, several approaches are possible. The 

simplest way is to assume that the future reference is constant and equal to the desired set point: 

yr(k)=yr(∞). The preferred approach is to use smooth reference trajectory that begins from the actual output 

value and approaches asymptotically via the first order filter to the set point yr(∞): yr(k)=y(k), 

yr(k+j)=αyr(k+j-1)+(1-α)yr(∞). The parameter  determines smoothness of the trajectory with  0 being 

the fastest and  1 being the slowest trajectory. 

When the future output of the plant in predictive control strategy is predicted using neural network plant 

model, the neural network predictive control (NNPC) is established. The general control structure for the 

NNPC is shown in Figure 2. 

The first step in neural network predictive control is training the network. The Levenberg-Marquard 

algorithm was chosen for network training and the name of the training function in MATLAB is trainlm. The 

training data were obtained from the controlled process with distributed parameters represented by the 

non-linear model of the heat exchanger with the sampling interval 1 s. 1,200 training samples were used 

for the neural network training. The NN model was trained off line. The results of training are shown in 

Figure 3 for the validation data. The prediction error was sufficiently small and the process output and the 

NN model output fitted well. It is possible to state that the NN training was successful. After the NN model 

was trained, the NNPC started. The parameters for NNPC of the described heat exchanger were chosen 

as follows: minimum prediction horizon Nmin = 1, maximum prediction horizon Nmax = 17, control horizon Nu 

= 3, weight coefficients in the cost function  = 5, P = 1, and the parameter for the reference trajectory 

calculation   0.00012. For computing the control signals that optimise future plant performance, the 

minimization routine csrchbac was chosen. It is in fact one-dimensional minimization using the 

backtracking method. The control input constraints were set: 1.5×10
-4

 ≤ q3in ≤ 3.5×10
-4

 m
3 

s
-1 

and control 

output constraints: 36.6 ≤ T1out ≤ 41 °C. The controller block was implemented in MATLAB-Simulink. 

3.3 Takagi-Sugeno fuzzy controller 
Control system with auxiliary manipulated variable can be used, when it is possible to split controlled 

process into two parts, the slow and the fast ones. Then, it is necessary to find two manipulated variables, 

one influencing the slow part and the whole process and the second one influencing only the fast part. 

Such  

 

Figure 2: Neural network predictive control. 
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Figure 3: Validation data for NN model. 

Sugeno-type fuzzy inference system was generated in the form:  

If e is Ai  Then fi = pi e + qi , i=1, ..., 6 (4) 

where e is the control error, q1(t) is the calculated control input and pi, qi are consequent parameters. The 

generalized bell membership function are used for the fuzzification of inputs and it depends on three 

parameters a, b, c as it is seen in (5) 
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The parameters a, b, and c for bell membership functions are listed in the Table 1. The consequent 

parameters in the control input rule (4) are listed in Table 2. Rule viewer that simulates the entire fuzzy 

inference process is shown in Figure 4 and Figure 5 shows the structure of the artificial neural fuzzy 

inference system ANFIS. 

Table 1: Parameters of the bell curve membership 

functions 

ai bi ci 

0.295  

0.355 

0.199 

0.219 

0.381 

0.319 

1.993 

2.016 

2.075 

2.066 

2.006 

2.000 

-1.034 

-0.324 

  0.045 

  0.656 

  1.390 

  2.082 

 

Table 2: Consequent parameters 

pi qi 

-1.06910
-3

 

-1.20410
-3

 

-1.03210
-3

 

-3.09610
-5

 

-7.71510
-6

 

-4.07510
-6

 

-2.12310
-4 

  3.32710
-4 

  4.13310
-4 

  3.36610
-5 

  1.40810
-5 

  9.88510
-6 

Simulation results obtained using designed NN predictive control, predictive control with fuzzy P controller 

and two PID controllers are shown in Figure 6. The controlled outputs are compared in the task of set point 

tracking and in the case when disturbances affect the controlled process. The set point changes from 

36.91 °C to 39 °C, then to 38 °C at 400 s and then to 40 °C at 800 s. Disturbances were represented by 

water temperature changes from 30°C  to 35 °C at 200 s, from 35 °C to 31 °C at 600 s min and to 34 °C at 

1000 s. The simulation results were compared also using integral criteria IAE (integrated absolute error) 

and ISE (integrated squared error) (Ogunnaike and Ray, 1994). The results for different performance 

measures are compared in Table 3.  

The control response obtained by neural network predictive control with fuzzy P controller has the smallest 

values of IAE and ISE, the smallest overshoots and the shortest settling times.  
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Figure 4: Fuzzy inference system  
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Figure 5: Structure of Anfis 

Table 3. Values of IAE and ISE 

controller  IAE ISE  

Cohen-Coon PI control 

Strejc PI control 

NNPC  

NNPC and fuzzy P controller 

171 

375 

151 

39 

138 

331 

142 

 9 

 

 

Figure 6:  Comparison of the outlet petroleum temperature control. 

4. Conclusion 

In this paper, a control strategy that uses the neural network predictive controller and the fuzzy controller 

in the complex control structure with an auxiliary control variable was investigated on the nonlinear heat 

exchanger. The advantage of this approach is that it is not a linear-model-based strategy and the control 

input constraints are directly included into the controller synthesis. Simulation results obtained using 

designed controllers were evaluated calculating integral performance indexes IAE and ISE. The control 

response obtained using the auxiliary control input had the smallest overshoots, the shortest settling times 

and also the smallest IAE and ISE values. The predictive control strategy with the auxiliary fuzzy controller 

provides satisfactory control responses for the set-point tracking as well as for the load disturbance 
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attenuation. Better results can be observed particularly in the case when disturbances affect the 

controlled process. 
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