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Bayesian network is an effective method for quantitative risk assessment, but most existing studies are either 
heavily data-dependent or excessively expert-dependent. In this paper, knowledge graph, complex network 
theory and Bayesian network are integrated into a KCB model for data-driven risk assessment, especially 
small data situations. By applying knowledge graph with natural language processing, a causation graph could 
be extracted and illustrated from accident reports. Some indexes from complex network theory are introduced 
to identify critical nodes to simplify the huge graph. Based on the simplified network, a Bayesian network is 
established to quantitatively demonstrate accidents from causes to consequences. Moreover, sensitivity 
analysis and scenario analysis are conducted to support the decision-making of safety management. In all, the 
expert involvement of Bayesian network can be reduced by applying the KCB model. Besides, the KCB model 
can be further applied to many other areas to reach uncertainty modelling.  

1. Introduction 
In the field of safety science, risk can be defined as a combination of probability and severity of consequences 
generally (SRA, 2018). There are already many qualitative and quantitative methods for risk assessment with 
various applications (Aven, 2016). Based on the research of Chen et al. (2020) and the opinion of the authors, 
the risk assessment methods may be broadly divided into four categories: index-based methods, simulation-
based methods, analytic methods and AI-based methods. With the emerging of big data and the Internet of 
Things (IoT), more and more data-driven risk assessment methods have been conducted in some highly 
digitalized domains. Hegde and Rokseth (2020) found that artificial neural network (ANN), support vector 
machine (SVM), decision tree (DT) and random forests (RF) are used most frequently in risk assessment. 
However, such machine learning approaches rely heavily on data and such a “black box” method may be 
difficult to explain. For the process industry, there are only small data available, which is difficult to support the 
traditional artificial intelligence (AI) technologies for risk assessment.  
Recently, some graph-based methods like Bayesian network, Petri net, dynamic graph theory are utilized to 
illustrate and assess accidents of process industries (Villa et al., 2016). Due to the ability to dynamically 
update probabilities and can derive with limited information, the Bayesian network has been widely used. It 
can better model the accidents of process industries but sometimes rely on expert judgment too much, 
especially for some data-lacking situations. Sattari et al., (2021) applied Bayesian network and AI to conduct 
quantitative risk analysis and find out management priority. But such AI-based Bayesian network methods 
require big data to learn, which is hard to obtain. Hence, there is still a lack of a data-driven risk assessment 
method that can be applied for small data areas. 
In this paper, knowledge graph, complex network and Bayesian network are integrated to conduct a data-
driven risk assessment. First, the knowledge graph is used to illustrate the causation network of accidents. 
Second, some indexes of complex network theory are utilized to identify critical nodes and cut unnecessary 
branches. Then, a Bayesian network is established for the quantitative risk assessment. The rest of this paper 
is organized as follows: the methodology of this paper is elaborated in section 2; a case study based on gas 
pipeline accidents is demonstrated in section 3, the potential limit and future expansion of this work is 
discussed in section 4, and the conclusions are presented in section 5. 
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2. Methodology 
The knowledge graph, complex network, Bayesian network and the integrated KCB (Knowledge graph - 
Complex network - Bayesian network) model are introduced as follows. 

2.1 Knowledge graph 

Knowledge graph is born to illustrate the relationship between each entity and firstly used in search engines. A 
knowledge graph is a multi-node (entity) graph connected by directed edges (relations) with properties and 
values (Yu et al., 2021). Generally, the establishment of a knowledge graph consists of three parts: knowledge 
extraction, knowledge fusion and knowledge storage. Recently, rule-based matching, machine learning are 
commonly used methods for building a knowledge graph. 

2.2 Complex network 

Complex network theory is developed based on graph theory and statistical physics. In complex network 
theory, every complex system can be abstracted as a network. The nodes in the network can be regarded as 
the elements in the system. If the various elements in the system are regarded as nodes and the relations 
between each element as connections, then the system constitutes a network. There are many structural 
indicators in complex network theory which can quantify the importance of nodes from the node itself or the 
network relationship level, such as degree centrality, eigenvector centrality, and clustering coefficient (Kim and 
Perez, 2015).  

2.3 Bayesian network 

Bayesian network is also called Bayesian belief network. It is a directed acyclic graph based on probabilistic 
reasoning and prediction to express and analyze uncertain events (Pearl, 1988). It consists of a variety of 
different nodes and directed edges. Each node represents a variable (which can be an observable variable, a 
hidden variable, an unknown parameter, etc.). There are two kinds of nodes, parent nodes and child nodes. 
And the directed edges represent the dependency relationship between the nodes (from a parent node to a 
child node). The Bayesian network is a kind of probability model to illustrate causation network and is widely 
used in almost every area. 

2.4 Integrated KCB model 

The integrated KCB (Knowledge graph - Complex network - Bayesian network) model contains three methods 
and five steps. First, knowledge graph is applied with natural language processing (NLP) to illustrate causation 
network from accident reports. Second, all sub-graph of the established knowledge graph is fused to a 
comprehensive network. Third, several indexes of the complex network are used to quantify importance of 
each node and find out critical ones to simplify the huge network. Fourth, a Bayesian network based on the 
simplified network is established. Finally, quantitative risk analysis is conducted based on sensitivity analysis 
and scenario analysis of the proposed Bayesian network. 

 

Figure 1: Flow chart of the integrated KCB model 
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3. Case study 
In this paper, the buried gas pipeline accidents from 2018-2021 in China are collected to conduct a case study 
of the proposed KCB model. The establishment of knowledge graph, simplification based on complex network, 
the establishment of Bayesian network, sensitivity analysis and scenario analysis of the proposed Bayesian 
network are elaborated in sequence as follows. 

3.1 Establishment of knowledge graph 

First, the accident reports of directly buried gas pipelines are collected from the Internet to build a data set, 
which contains 124 gas pipeline accidents from 2018 to 2021 in China. Then, by applying LTP (LTP, 2014), a 
widely used natural language processing tool to conduct word segmentation, speech tagging, dependency 
parsing and role labelling, the original knowledge graph is established as Figure 2a shows. However, the 
original knowledge graph consists of many sub-graphs, which cannot be transferred to Bayesian network. 
Hence, the original graph is then fused to form a comprehensive graph as Figure 2b shows. The fusion is 
based on the primary pattern of gas pipeline accidents “causes (in green) -gas leakage (in blue) -accidents (in 
purple) -losses (in red)”.  Not only repeated nodes of the knowledge graph are merged, but the relationship 
between cause nodes in different event chains is also determined by literature research and expert 
consultation. 

 

Figure 2: Knowledge graph of gas pipeline accidents before (2a) and after (2b) fusion 

3.2 Optimization and simplification based on complex network 

For clearer illustrating the topology of gas pipeline accidents and better establishing Bayesian network, it is 
necessary to simplify (i.e., cut branches) the proposed knowledge graph. Therefore, the complex network 
theory is introduced to optimize and simplify the graph by calculating several importance indexes. The 
frequency ratio, degree centrality, eigenvector centrality and clustering coefficient are calculated to form a 
comprehensive priority ratio. The simplification of the graph structure varies by different types of nodes. For 
the accident nodes and loss nodes, there is no interconnection within the various nodes, so the accident 
nodes and loss nodes are grouped into one category for simplification in this paper and the calculation of the 
clustering coefficient is omitted. Because of the higher the structural importance of the node, the probability of 
its occurrence is not necessarily higher. Therefore, in addition to the calculation of the key indicators of the 
complex network, the occurrence frequency of each node is also normalized to obtain the frequency ratio. The 
weights of key indicators are determined through the Analytic Hierarchy Process (AHP). For the cause node, 
the weights of the indicators are WFR:WDC:WEC:WCC=0.65:0.1:0.1:0.15. For accident nodes and loss nodes, 
the weights of the indicators are WFR:WEC:WCC=0.7:0.15:0.15. Therefore, the comprehensive priority score of 
each node is obtained by weighting (Table 1). By ranking the comprehensive priority score of nodes in each 
type, the important nodes can be identified to support further assessment. With different purposes and objects, 
a different number of nodes could be filtered. In this case, the top four cause nodes, top three accident nodes 
and top three loss nodes are selected as critical nodes to form the simplified network. 
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Table 1: Importance indexes of nodes in the fused knowledge graph 

Node Frequency 
ratio 

Degree 
centrality 

Eigenvector 
centrality 

Clustering 
coefficient 

Comprehensive 
priority score 

Construction Damage 0.569 0.154 0.083 0.667 0.494 
Improper Maintenance 0.108 0.308 0.125 0.500 0.188 
Corrosion 0.077 0.154 0.083 0.667 0.174 
Valve Failure 0.031 0.154 0.083 0.667 0.144 
Surface Subsidence 0.031 0.231 0.146 0.833 0.183 
Improper Ventilation 0.031 0.154 0.083 0.667 0.144 
Auxiliary Facilities Damage 0.031 0.077 0.000 0.000 0.028 
Arson 0.031 0.154 0.042 0.667 0.140 
Improper Fire Work 0.015 0.154 0.042 0.667 0.130 
Landslide 0.015 0.231 0.146 0.833 0.173 
Improper Weld 0.015 0.077 0.000 0.000 0.018 
Vehicle Collision 0.015 0.077 0.000 0.000 0.018 
Rain 0.015 0.308 0.167 0.700 0.162 
No Cut Off 0.015 0.077 0.000 0.000 0.018 
Explosion 0.542  0.556  0.253   0.501  
Fire 0.375  0.556  0.253  0.384  
Continuous Dispersion 0.042  0.556  0.253  0.151  
Poisoning 0.021  0.111  0.067  0.041  
Evacuation 0.021  0.333  0.173  0.091  
Gas Supply Interruption 0.417  0.333  0.176  0.368  
Casualties 0.250  0.556  0.224  0.292  
Economic Losses 0.167  0.444  0.212  0.215  
Traffic Interruption 0.083  0.444  0.212  0.157  
Environmental Damage 0.083  0.333  0.176  0.135  

3.3 Establishment of Bayesian network 

Based on the structure of the simplified network in the previous section, the topology structure of Bayesian 
network is established. Then, the prior probabilities of parent nodes and conditional probabilities of child nodes 
are determined by statistics and expertise with the Delphi method, which is a multi-feedback expert 
communication method to make sure the expert opinions in consistence. As a result, the Bayesian network 
with the ability to dynamically update posterior probabilities is established as shown in Figure 3. With the 
proposed Bayesian network, the sensitivity analysis and scenarios analysis are conducted in the following 
section.  

 

Figure 3: Bayesian network based on the simplified network 

 

Construction_Damage
yes
no

53.9
46.1

Gas_Leakage
yes
no

54.7
45.3

Explosion
yes
no

0.55
99.5

Improper_Maintenance
yes
no

58.9
41.1

Corrosion
yes
no

34.9
65.1

Surface_Subsidence
yes
no

15.9
84.1

Economic_Losses
severe
slight

16.6
83.4

Continuous_Dispersion
yes
no

60.7
39.3

Fire
yes
no

8.04
92.0

Gas_Supply_Interruption
yes
no

32.2
67.8

Casualties
yes
no

6.89
93.1

34



3.4 Sensitivity analysis of the Bayesian network 

The sensitivity analysis of Bayesian network can quantify the influence of each parent node that affect a 
certain child node. For the Bayesian network of gas pipeline accidents, it is essential to find out which cause is 
most likely to result in gas leakage. By calculating the sensitivity of the three cause nodes to the gas leakage 
node, the results of Table 2 shows that “Construction damage” and “Improper maintenance” can dramatically 
impact the occurrence of gas leakage, the sensitive proportion of them are 17.7 % and 17.6 %, respectively. 
Similarly, the main accident that affects serious casualties is “Fire”, whose sensitive proportion is 35.6 %. And 
both gas supply interruption and serious economic loss are mostly affected by “Continuous dispersion” with 
sensitivities higher than 28 % and 13 %, respectively (Table 2). Hence, these nodes with higher sensitivities 
need to be handled with more effort. 

Table 2: Sensitivity analysis results of Bayesian network 

target nodes Sensitive node Sensitive proportion 
Gas leakage 
Interruption 

Construction damage 17.7 % 
Improper maintenance 17.6 % 
Corrosion 4.81 % 
Surface subsidence 2.03 % 

Casualties Fire 35.6 % 
Continuous dispersion 12.6 % 
Explosion 2.75 % 

Gas supply Continuous dispersion 28.5 % 
Fire 9.25 % 
Explosion 0.712 % 

Economic losses   Continuous dispersion 13.3 % 
Fire 3.01 % 
Explosion 0.281 % 

3.5 Scenario analysis of the Bayesian network 

In this section, evidence (one or more nodes setting in a certain state) is given to calculate the posterior 
probabilities of the proposed Bayesian network. Based on the previous sensitivity analysis, “Construction 
damage”, “Fire” and “Continuous dispersion” are the key nodes in this Bayesian network. Combing the states 
of the three key nodes, seven potential scenarios of gas pipeline accidents are designed and their results are 
shown in Table 3. Meanwhile, the Bayesian network with updated posterior probabilities in scenario 2 is 
shown in Figure 4. Through the scenario analysis, not only the consequence probability of a particular 
scenario can be calculated, the impact of different nodes can be quantified by comparing different scenarios. 
The results show that preventing fire when the construction damage node occurs can effectively reduce the 
accident loss (supply interruption from 87.5 % to 47 % and casualties from 57.9 % to 4.35 %). Meanwhile, 
although the continuous dispersion cannot directly cause great casualties, the probability of triggered gas 
supply interruption is still higher than 47 %. 

 

Figure 4: Bayesian network in scenario 2  
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Table 3: The states and results of scenario analysis 

Scenarios Construction 
damage 

Continuous 
dispersion 

Fire Gas supply 
interruption 

Casualties Economic 
losses 

1 yes yes yes 87.5 % 57.9 % 39.8 % 
2 yes yes no 47.0 % 4.35 % 23.8 % 
3 yes no yes 74.8 % 37.9 % 35.6 % 
4 yes no no 1.06 % 0.043 % 2.13 % 
5 yes yes unknow 52.7 % 11.8 % 26.0 % 
6 yes unknow yes 87.2 % 57.4 % 39.7 % 

4. Discussions 
Due to the limited space, the Bayesian network is small, the sensitivity analysis and the scenario analysis is 
relatively simple, and the conditional probability tables still rely on expert judgment. However, many works 
could be further analyzed. With more scenarios designed and analyzed in the Bayesian network, the results 
can effectively and quantitatively support the design of the emergency plan. If the sensors of gas pipelines 
could be linked with the proposed model, the Bayesian network can dynamically update and support real-time 
emergency decision-making. By adding safety barrier nodes and comparing results before and after 
improvement, the optimization strategy could be put forward. 
Through the gas pipeline accident case study, the proposed KCB model is proved useful for risk assessment 
with small data. Moreover, this model can be applied for both big data and small data, as long as textual data 
with causation relationships. Besides, the KCB model can be applied in almost every area, process industries, 
construction industries, economics, medicine, etc. Also, the three methods in the KCB model can be flexibly 
changed to better focus on the analyzed issue.  

5. Conclusions 
In this paper, knowledge graph, complex network theory and Bayesian network are integrated to form a KCB 
model for data-driven risk assessment. With the proposed model, knowledge (factors and relationships) could 
be extracted and illustrated from small data. And the causation topology can be quantitatively demonstrated 
with Bayesian network. The subjectivity of the establishment of Bayesian network can be relatively avoided by 
applying the KCB model. And the KCB can be easily adjusted to suit many other issues. 
A case study for buried gas pipeline accidents in China is analyzed based on the proposed KCB model. A 
knowledge graph with 241 nodes and 155 edges is put forward and further transformed to an 11-node 
Bayesian network by complex network theory. Results of sensitivity analysis and scenario analysis of the 
Bayesian network provide quantitative reference to safety management: controlling fire after construction 
damage occurs can reduce the probability of supply interruption from 87.5 % to 47 % and casualties from 
57.9 % to 4.35 %. Moreover, the results indicate the proposed model can suit not only big data but also small 
data, which is especially practical for some traditional industries. 
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