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The need for sustainability and a smaller ecological footprint lead to the construction of more airtight building 

envelopes with better thermal insulation to increase energy efficiency according to the Energy Performance of 

Buildings Directive (EPBD 2010/31/EU). However, specific fire risks can be encountered by the occupants since 

they can be blocked for a long period due to the fire-induced pressure increase and the inward door opening. In 

a previous experimental campaign, wood crib fire tests were carried out for measuring fire-induced pressure in 

a 70m3 airtight building. High pressure inside the rooms was observed highlighting the problems for the 

evacuation of the occupants. Moreover, these experimental results were also used to validate the Fire Dynamics 

Simulator (FDS). Satisfactory predictive capability of FDS was obtained for fire-induced pressure and 

mechanical ventilation considering the influence of the pressure on the area of the leakages but the heat release 

rate (HRR) was fixed as input data for the simulations. Computational Fluid Mechanics CFD modeling is 

regularly used in fire safety engineering but generally, a significant limitation comes from the HRR which has to 

be imposed as input data. 

This paper presents an evaluation of FDS v6.7.6 capability to predict fire-induced pressure without setting the 

HRR as input data. Fire tests were carried out with a simple fuel load such as heptane pool fire. At first, heptane 

pool fires were performed in an open atmosphere for preventing complex interactions between the compartment 

and fuel vaporization rates and evaluating the ability of FDS to predict liquid pool fire fuel mass-loss rates. 

Secondly, twenty-one heptane pool fires were performed in a 70 m3 setup for evaluating the capability of FDS 

to predict heptane mass-loss rates, fire-induced pressure, and temperature field in the fire room in several 

enclosure configurations. 

1. Introduction 

The need for sustainability and a smaller ecological footprint lead to the construction of more airtight building 

envelopes with better thermal insulation in order to increase the energy efficiency of houses, according to the 

Energy Performance of Buildings Directive (2010). However, specific risks could occur during the evacuation of 

the occupants in case of fire in « confined » dwellings as was observed on the night of 5 February 2013 when 

a fire occurred in a passive apartment in Cologne, the occupant being blocked for 2 minutes inside his apartment 

due to the thermal expansion of fumes and the inward door opening (Brohez et al, 2018). Learning from fire 

accidents is essential for preventing as far as possible accidents of the past are being repeated in the future 

(Hailwood, 2016), relying on research practical results and fire safety regulations. 

A 70 m3 full-scale fire-setting was built in 2015 in Bauffe by the Régie Provinciale Autonome Hainaut Sécurité 

RPA on its fire brigade training site for studying the effects related to the fire development in a building with high 

airtightness. Two different ventilation duct configurations were tested during pallets or wood cribs fires tests 

carried out by the University of Mons (Brohez et al, 2020): one with mechanical ventilation on, the other one 

with the ducts being closed with an airtight metal cap (the mechanical ventilation being off). Fire-induced peaks 

pressures from 870 to 2035 Pa were measured without mechanical ventilation (ducts closed), while values from 

420 to 750 Pa were observed with the mechanical ventilation on. These high pressures inside the rooms 

highlighted the problems for the evacuation of the occupants in case of fire. These experimental results were 
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also used to validate the Fire Dynamics Simulator (FDS). Satisfactory predictive capability of FDS was obtained 

for fire-induced pressure and mechanical ventilation taking into account the influence of the pressure on the 

leakages area, but the HRR was fixed as input data for the simulation. 

This paper presents new experimental results obtained from fire tests carried out with heptane pool fire. At first, 

heptane pool fires were performed in an open atmosphere for preventing complex interactions between the 

compartment and fuel vaporization rates and evaluating the ability of FDS to predict liquid pool fire fuel mass-

loss rates. Secondly, twenty-one heptane pool fires were performed in the 70 m3 setup for evaluating the 

capability of FDS to predict heptane mass-loss rates, fire-induced pressure, and temperature field in the fire 

room in several enclosure configurations. 

2. Experimental setup 

Two different sizes of square heptane pool fire were used for the open atmosphere fire tests: 0.3m x 0.3m and 

0.5m x 0.5m steel pans (with a 2 mm thickness). The pan height was 3 cm and 5 cm respectively for the little 

and the large pan. A volume of 1.5 L and 2 L of heptane was used respectively for the small and the large pool 

fires. Four strain gauges were used to measure the mass of the fuel every second. To prevent unwanted 

temperature effects on the strain gauges, a Wheatstone measuring bridge was used for the gauges and a box 

made of non-combustible mineral board was placed between the pan and the strain gauges. Thermocouples 

were also placed in the liquid pool at different heights. 

In addition to open atmosphere fire tests, tests were also performed in the 70 m3 setup in the Régie Provinciale 

Autonome Hainaut Sécurité RPA. The structure is divided into two compartments: the first room is 4 m long, the 

second one is 8 m. They are separated by a 0.12 m thick wall composed of a steel stud frame filled with mineral 

wool covered with plasterboards on both sides. A partition door is in this wall, a gap of 0.9 m x 0.01 m is located 

at the bottom of this door for air circulation. The walls are composed of three layers of different materials: 26 

mm plasterboards, 50 mm insulation layer, and 200 mm concrete blocks finished with plaster on the inside to 

ensure airtightness. The floor and the ceiling are made of 150 mm concrete slabs; the latter being insulated with 

50 mm of mineral wool protected by 130 mm thick plasterboards to reduce the heat losses. The building has no 

window but only one external door. The ventilation of the building is guaranteed thanks to the mechanical 

ventilation network. However, for the experiments presented in this paper, the ducts were tightly closed, and the 

partition door was opened (the external door was closed). The fire tests were carried out with both the steel 

pans, the center of the pan being located about 1.4 m from the back wall and 1.2 m from the side walls. 

     
   (a)                                                                            (b) 

Figure 1: (a) Heptane pool fire in open atmosphere (50cm x 50cm pan); (b) Sketchup of the 70 m3 airtight setup 

3. Numerical modelling 

3.1 CFD model and pool vaporization sub-model 

The Fire Dynamics Simulator (FDS) v6.7.6 (McGrattan et al., 2012, 2021) was used to perform the simulations. 

FDS is a Large Eddy Simulation CFD model that solves a discretized form of the Navier-Stokes equations 

appropriate for low-Mach number, thermally driven fluid flows. Pool fires are modelled in two ways in FDS: the 
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fuel mass loss rate (or HRR) is prescribed or is predicted from a pyrolysis model. In the pyrolysis model, the 

liquid fuel itself is treated like a thermally thick solid for simplicity. There is no computation of the convection of 

the liquid within the pool. A one-dimensional heat conduction equation is solved for the temperature of the liquid 

fuel 𝑇𝑙(𝑥, 𝑡): 

𝜌𝑙 𝑐𝑙
𝜕𝑇𝑙

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘𝑙

𝜕𝑇𝑙

𝜕𝑥
) + 𝑞̇𝑙

′′′     (1) 

where 𝜌𝑙, 𝑐𝑙 and 𝑘𝑙 are respectively the fuel density, specific heat and thermal conductivity. The source term 

𝑞̇𝑙
′′′ consists of the sum of heat loss rate given by the pyrolysis model and radiative absorption. 

The surface temperature of the pool surface is given by the boundary condition: 

−𝑘𝑙
𝜕𝑇𝑙(0,𝑡)

𝜕𝑥
= 𝑞̇𝑐

" + 𝑞̇𝑟
"      (2) 

where 𝑞̇𝑐
"  and 𝑞̇𝑟

"  are respectively the convective and radiative fluxes at the surface of the pool. 

The rate at which a liquid fuel evaporates when burning is a function of the liquid temperature and the 

concentration of fuel vapor above the pool surface. According to the Clausius-Clapeyron relation, the volume 

fraction of the fuel vapor above the surface 𝑋𝐹,𝑙 is a function of the liquid boiling temperature: 

𝑋𝐹,𝑙  = 𝑒𝑥𝑝 [−
ℎ𝑣 𝑊𝐹

𝑅
(

1

𝑇𝑙
−

1

𝑇𝑏
)]    (3) 

where ℎ𝑣 is the heat of vaporization, 𝑊𝐹 is the molecular weight of the fuel gas, 𝑇𝑙 is the surface temperature, 

and 𝑇𝑏 is the boiling temperature of the liquid. The evaporation rate of the fuel is governed by Stefan diffusion: 

𝑚"̇ = ℎ𝑚
𝑝̅𝑚𝑊𝐹

𝑅 𝑇𝑔
𝑙𝑛 (

𝑋𝐹,𝑔−1

𝑋𝐹,𝑙−1
)    (4) 

where 𝒑̅𝒎 is the pressure, 𝑻𝒈 is the temperature, and 𝑿𝑭,𝒈 is the volume fraction of fuel vapor in the grid cell 

adjacent to the pool surface. 

3.2 Mesh resolution and computational domain 

The computational domain, 3x3x6 times the fire diameter, was specified to ensure the minimal effect of the open 

boundary conditions on the air entrainment near the fire and fuel combustion within the simulated domain. 

For buoyant plumes simulation, the non-dimensional expression 𝐷∗ 𝛿𝑥⁄  is used to calculate the suitable mesh 

size 𝛿𝑥, where the characteristic length 𝐷∗ is calculated according to:  

  𝐷∗ = (
𝑄̇

𝜌∞ 𝑐𝑝𝑇∞√𝑔
)

2 5⁄

   (5) 

𝑄̇ is the HRR (kW), 𝜌∞ is the ambient air density, 𝑐𝑝 is the specific heat of the fluid, 𝑇∞ is the ambient air 

temperature. A 0.63 m (0.88 m) characteristic length 𝐷∗ was estimated from a measured peak HRR of 350 kW 

for the little pan (850kW for the large pan). The recommended ratio of 𝐷∗ 𝛿𝑥⁄  is between 5 and 25 leading to a 

mesh cell size respectively of 0.125 and 0.025 m for the small pan (0.157 and 0.035 m for the large pan). 

Different meshes sizes (0.1, 0.05, 0.025 and 0.0125m) were used for performing a grid sensitivity for the HRR 

prediction and to verify the grid resolution (Figure 2). 

     
(a)                   (b) 

Figure 2: Grid sensitivity analysis for HRR prediction. Square pool fires: (a) 0.3 x 0.3m; (b) 0.5 x 0.5m 

As can be seen in Figure 2, the 10 and 5 cm mesh cell sizes are too coarse for satisfactory grid resolution. While 

these mesh resolutions would give satisfactory results for plume temperature and pressure in airtight enclosures 

with fixed HRR as input data (Brohez, 2020), no satisfactory results are observed for the HRR predictions. 
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However, similar HRR results are obtained for the 2.5 and 1.25 cm mesh cell sizes. In the present study, a 1.25 

cm mesh cell size was chosen for all the calculations. Higher burning rates are observed in Figure 2 with coarse 

grids. Sikanen et al (2016) showed that the predicted incident heat flux on the pool surface increases as the grid 

is too coarse which is linked to the inability of the coarse grid to capture the fuel rich core of the flame and a 

faster mixing of fuel and oxidizer. The blocking effect of the fuel vapors is weakened. 

4. Experimental results – FDS validation 

4.1 Open atmosphere 

Heptane pool fires were carried out in open atmosphere in the absence of wind or with light wind across the 

pool. After ignition, a rapid increase of the HRR is observed as the flame heats the fuel surface. Heat propagates 

into the liquid and a thermal equilibrium seems to be reached with a quasi-steady HRR for a period of about 60 

seconds for the large pan (about 110 seconds for the little pan). Then a transition to bulk boiling was observed, 

the pool surface appears unsteady with huge bubbling through the surface. 

  
(a)                  (b) 

Figure 3: Comparison of measured and predicted HRR. Square pool fires: (a) 0.3 x 0.3m; (b) 0.5 x 0.5m 

 

The combustion model used in FDS is an infinitely fast, mixing-controlled reaction scheme (McGrattan et al., 

2021). The combustion occurs in the model wherever fuel vapor and oxygen co-exist. For a fuel such as heptane 

having a low boiling temperature, ignition of the fuel is instantaneous in FDS and the flame covers the entire 

fuel surface immediately (as observed during the experiments). Comparing the model predictions with the 

experimental measurements shows that FDS consistently predicts the heating phase involving ignition and the 

subsequent rapid increase of the HRR (Figure 3). Globally, FDS predicts consistently all the phases of the HRR 

at the exception of the extinction one which is slower. In the FDS simulation, the extinction begins at the center 

of the heptane pan before going outwards to complete extinction at the pan edge (the heat feedback to the fuel 

surface is higher in the center of the pan and decreases towards the edge of the fuel pan). With the cell-by-cell 

solution procedure of FDS, the fuel is consumed more quickly at the fuel pan center than around the edges of 

the pan due to the non-uniformity distribution of heat feedback to the fuel surface (Stewart et al, 2021). 

Consequently, the fuel evaporation sub-model predicts a stepwise decay of the HRR. However, the remaining 

fuel would be able to flow within the pan to remain at an approximately constant depth across the entire pan 

area until extinction (with a more abrupt extinction). Moreover, a one-dimensional heat conduction equation is 

used in FDS which leads certainly to an underestimation of the conduction heat transfer especially during the 

extinction phase.  

4.2 Heptane pool fires in the 70 m3 setup 

Measurements were made for gas pressure in the fire room and between both rooms, gas temperatures in the 

center of each room using 1 mm in diameter K-type thermocouples trees with 0.2 m vertical separation and fuel 

mass from load cell. The fuel mass loss rate 𝑚𝑓̇  was calculated from a smoothing technique and the heat release 

rate 𝑄̇ was then calculated with a 44.6 MJ.kg-1 heat of combustion ∆𝐻𝑐: 

𝑄̇ = ∆𝐻𝑐 𝑚𝑓̇    (6) 

Both the HRR and the leakages area of the building envelope are key parameters for fire induced pressure 

prediction in an airtight building. The leakages area of the building was fixed as input data. But, in a typical 

building, as the pressure increases, the leakages area increases as small gaps, cracks and other leakage paths 

open-up. Overpressure tests were carried out in a large pressure range Δp (0–600Pa) according to the ASTM 
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E779 to characterize the leakages area of building. The leakages area can be expressed as function of the 

pressure according to the following equation:  

𝐴𝐿 = 𝐴𝐿,𝑟𝑒𝑓 (
Δp

∆𝑝𝑟𝑒𝑓
)

𝑛−0.5

   (7) 

The pressure zone leakages model was used in FDS 6.7.6 with the actual 0.7 value for the leakage pressure 

exponent n, and a 20.7 cm2 leakage reference area at a reference pressure of 58 Pa tanks to the overpressure 

tests (Brohez et al, 2020).Figure 4 compares the measured and the predicted time varying HRR obtained in the 

70 m3 setup with ducts tightly closed and partition door opened, the external door being closed. While 

satisfactory comparisons were obtained for heptane pool fires in open atmosphere, FDS overpredicts the HRR 

of the heptane pool fire inside the compartment by a factor of 3 (before obtaining numerical instabilities).  

  
      (a)           (b) 

Figure 4: (a) Comparison of measured and predicted HRR for the 0.3 x 0.3m pool fires in the 70 m3 airtight setup 

and in open atmosphere (OA); (b) Simulated incident heat flux on the pool surface 

 

For pool fires with diameters higher than 10 cm, the contribution of the radiative heat transfer (compared to 

convection) increases with pool diameter and becomes the main mode of heat transfer to the pool surface 

(Beyler, 2002). Unfortunately, the radiative heat flux to the pool surface was not measured during the heptane 

fires. However, the radiative and convective heat fluxes on the pool surface was calculated thanks to FDS and 

are presented in Figure 4(b) for both the open atmosphere and the compartment heptane pool fires. As 

expected, it can be observed that radiation is the main mode of heat transfer. Moreover, the heat feedback to 

the pool surface is overestimated for the pool fires in the compartment (in comparison to the open atmosphere 

heptane pool fire) which is linked to heat feedback from the compartment.  

As can be observed in Figure 3(a) and 4(a), the HRR measured in the 70 m3 setup is similar to the one obtained 

in an open atmosphere. It was then decided to fix the predicted HRR obtained with FDS for the open atmosphere 

fire as input data for the simulation of the pool fire in the 70m3 setup. Figure 5 compares the measured and the 

predicted fire induced pressure as well as the temperature in the fire room obtained from this simulation (at 0.1 

and 2.1 m high). 

  
Figure 5: Comparison of measured and predicted fire induced pressure and fire room temperature for the 0.3 x 

0.3m pool fire in the 70 m3 airtight setup. 

 

Fire-induced pressure of about 800 Pa were measured with the small heptane pool fire which could prevent the 

safe evacuation of the occupants in case of inward door opening, the door opening forces resulting from this 
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range of fire-induced pressure being higher than the maximum design value given by building and life safety 

regulation (133N). Globally satisfactory predictions are obtained with FDS for fire-induced pressure and 

temperatures in the fire room at the exception of the temperature near the floor in the 70m3 setup. Pressure 

peaks of about 800 and 600 Pa were respectively measured and predicted. A shift can be observed for the 

predicted pressure due to the HRR curve shape which is not exactly the same as the measured one (Figure 

4a). While satisfactory predictions are obtained for fumes temperature at 2.1 m high (30 cm below the ceiling), 

the temperature near the floor (0.1 high) is overestimated by the model. Forthcoming research is needed to 

better understand the temperature fields discrepancies which could be linked to the air recirculation in the airtight 

room.  

5. Conclusions 

CFD modeling is regularly used in fire safety engineering but generally, a significant limitation comes from the 

HRR which is imposed as input data. This paper presents an evaluation of FDS v6.7.6 capability to predict fire-

induced pressure in an airtight compartment without setting the HRR as input data. At first, heptane pool fires 

were performed in an open atmosphere for preventing complex interactions between the compartment and fuel 

vaporization rates. It has been shown that FDS gives consistent results for the fuel mass loss rate but only with 

the finest mesh to correctly simulate the heptane vapor-rich core above the fuel surface. Secondly, heptane 

pool fires were performed in a very airtight setup. Unfortunately, the mass-loss rate was overestimated by a 

factor of 3 by FDS due to the incident radiative heat flux on the pool surface (heat feedback from the 

compartment). As the HRR measured in the 70 m3 setup was similar to the one obtained in an open atmosphere, 

it was decided to fix the predicted HRR obtained with FDS in the open atmosphere as input data for the 

simulation of the fire in the airtight compartment. Globally satisfactory predictions are obtained with FDS for fire-

induced pressure and temperatures in the fire room at the exception of the temperature near the floor. 

Forthcoming research is needed to better understand the temperature field discrepancies which could be linked 

to the air recirculation in the airtight room. It can be pointed out that fire-induced pressure of about 800 Pa were 

measured with the small heptane pan which could prevent the safe evacuation of the occupants in case of 

inward door opening. In a forthcoming publication, experimental results obtained from the opening of a natural 

smoke exhaust activated with a smoke detector will be presented as a mitigation measure to avoid the blocking 

of the occupants within a confined dwelling subjected to a fire. 
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