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While the implementation of renewable energy systems and model predictive control (MPC) could reduce non-
renewable energy consumption, one challenge to building climate control using MPC is the weather forecast 
uncertainty. In this work, we propose a data-driven robust model predictive control (DDRMPC) framework to 
address building climate control with renewable hybrid energy systems under weather forecast uncertainty. The 
control and energy system configurations include heating, ventilation, air conditioning, geothermal heat pump, 
photovoltaic panel, and electricity storage battery. Historical weather forecast and measurement data are 
gathered from the weather station to identify the forecast errors and for the use of uncertainty set construction. 
The data-driven uncertainty sets are constructed with multiple machine learning techniques, including principal 
component analysis (PCA) with kernel density estimation (KDE), K-means clustering coupled with PCA and 
KDE, and Dirichlet process mixture model (DPMM). Lastly, a data-driven robust optimization problem is 
developed to obtain the optimal control inputs for a building with renewable energy systems. A case study on 
controlling a building with renewable energy systems located on the Cornell University campus is used to 
demonstrate the advantages of the proposed DDRMPC framework. 

1. Introduction 
Building controls are becoming more complicated nowadays because in addition to traditional actuators such 
as lighting and heating, ventilation, and air conditioning (HVAC), building energy systems must take into account 
multiple modern technologies, including energy storage, photovoltaic (PV) technologies, geothermal heat 
pumps, and more (Li et al., 2014). In a hybrid energy system, renewable energy sources are utilized such as 
geothermal energy and solar energy (Tian et al., 2022). Since the soil temperature is nearly constant under 
sufficient depth, geothermal energy can heat the building in winter and cool down the building in summer (Self 
et al., 2013). Solar energy can be utilized through PV panels and can be stored in battery systems (Ogunjuyigbe 
et al., 2016). The electricity generated from solar energy can then be used for lighting and heating. In addition, 
the solar energy can heat water in the storage tank directly for daily hot water demand in the building. By 
adopting the hybrid energy system, energy costs can be significantly reduced. 
Model predictive control has been explored to improve building control performance (Morari and Lee, 1999). 
Because the building climate is a multi-input multi-output (MIMO) system, MPC has advantages over other 
classical control methods to gain the optimal control inputs for multiple control actuators. In addition, the 
information in the weather forecast can be easily incorporated into the MPC framework to help reduce the total 
energy cost (Chen et al., 2021). Although MPC has advantages over classical control methods, the uncertainty 
of weather forecast errors could lead to violations of system state constraints and would cause discomfort to 
occupants in the building. On the other hand, robust MPC (RMPC) can be employed to deal with the uncertainty 
of disturbances, which are weather forecast errors in the context of building climate control (Bemporad and 
Morari, 1999). RMPC could protect the system states from violating the constraints when uncertainty is bounded 
(Chen et al., 2018). Although RMPC could protect the indoor climate from becoming uncomfortable to 
occupants, it may lead to over-conservative results (Chen et al., 2022). To reduce the conservatism of RMPC, 
data-driven robust optimization that captures the high-density region of uncertainty data in decision-making is a 
popular approach for monitoring, control, and optimization of industrial processes (Shang et al., 2019). Data-
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driven RMPC (DDRMPC) adopts machine learning techniques or statistical hypothesis tests to construct 
uncertainty sets that capture high-density regions of the uncertain forecast errors from historical weather data 
(Shang and You, 2019). Therefore, DDRMPC is an appropriate approach to ensure building climate by taking 
account of uncertainties within weather forecast errors.  
The objective of this work is to develop a DDRMPC framework for building climate control with renewable hybrid 
energy systems that can (a) predict the future building climate through a dynamic model; (b) simultaneously 
control multiple system states of building indoor climate (i.e., temperature, humidity, and predicted mean value 
(PMV) index) to minimize the total control cost and to ensure thermal comforts for occupants.; (c) integrate 
hybrid energy system to fully utilize renewable energy sources; (d) adopt machine learning techniques to 
address uncertainties of weather forecast errors and ensure building climates within comfortable range. 

2. Data-driven robust model predictive control framework 
2.1 Dynamic model formulations for temperature, humidity, and PMV index model 

The nonlinear dynamic models of the building climate and sustainable energy systems, including temperature, 
relative humidity, thermal comfort, earth heating sources, PV panels, are first constructed using first-principal 
equations. An indoor air temperature dynamic model is required in the framework to control the indoor 
temperature better. Building thermodynamic models are often developed as a resistance-capacitance model, 
where building components are viewed as resistances and capacitances. In this work, we employ the Building 
Resistance-Capacitance Modeling (BRCM) MATLAB Toolbox to develop the dynamic model for building indoor 
temperatures (Sturzenegger et al., 2016). The BRCM Toolbox generates the system dynamics tailored to the 
MPC framework through building geometry, structure, and materials. The system dynamics are given by: 
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where Tk denotes the temperatures of rooms or wall/floor/ceiling, uk the inputs, and vk the predicted disturbances 
at time step k. A, Bu, Bv, Bvu,i, and Bxu,i are matrices of appropriate sizes. 
The humidity inside the building can be modeled by differential equations. The absolute humidity is first modeled 
by using the mass balance equation. The relative humidity is then calculated from absolute humidity and building 
indoor temperature. The mass balance equation of water, including the net flow from ventilation, respiration of 
occupants, and the humidifier, is shown as, 
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where ih  is the absolute humidity, ventm  is the water net flow from ventilation, resm  is the water net flow from the 
respiration of the occupants, and humm  is the water net flow from the humidifier system.  
The absolute humidity model can then be converted into relative humidity using the equation as follows, 
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where iH  is the relative humidity, P is the atmospheric pressure, and satp  is the saturated atmospheric pressure. 
Eq(3) shows the dependence of the temperature and humidity models. 
Although some climate control studies evaluate thermal comfort only by temperature, occupants’ actual thermal 
comfort condition can be better gauged using the PMV index. PMV index serves better by calculating occupants’ 
real feelings through the energy balance between the environment and occupants’ bodies. The factors 
considered in the PMV index include indoor temperature, indoor relative humidity, air velocity, mean radiant 
temperature, clothing insulation, and metabolic rate (Standard ASHRAE, 2010). The PMV index can be 
estimated by (Yang et al., 2018): 

( )bM
diffPMV ae c Q   (4) 

where M is the metabolic rate of a human being and Qdiff is the difference between the internal heat production 
and loss that occurs in a human body, and the value of coefficients a, b, and c, can be found in ISO 7730 by 
International Standards Organization (1994). 
DDRMPC is used to control the building climate using renewable energy sources in this work. The state-space 
model, constraints, and data-driven uncertainty sets are the most important components in DDRMPC framework 
and are discussed in the following subsections. 
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Due to its simplicity, the Euler method is adopted to discretize the building climate dynamic models shown in 
Section 2 (Butcher, 2016). The nonlinear system model can then be linearized and expressed as the following: 

0 u v wx   x A B u B v B w  (5) 

where system states x include building indoor air temperature, relative humidity, and thermal comfort. Control 
inputs u consist of HVAC, geothermal heat pump, and electricity storage battery. Forecasted disturbances v 
contain ambient temperature, ambient relative humidity, and solar radiation. w includes forecast errors of 
ambient temperature, solar radiation, and ambient humidity. x0 is the initial system states. 
The constraints are defined for control inputs and system states throughout the prediction horizon H. The 
compact form of the system states and control inputs can be shown as 

, x x u u G x g G u g  (6) 

where Gx, Gu, gx, and gu help define the compact form of system states and control inputs constraints. 

2.2 Clustering based uncertainty set construction 

Clustering the uncertainty data has been found useful when the data has disjoint-data structure (Zhao and You, 
2022), which is the case of forecast errors (Fay and Ringwood, 2010). A classic yet powerful clustering method 
is K-means clustering (Hartigan and Wong, 1979). The forecast error data w are first scaled to zero-mean w0. 
The K-means algorithm clusters the data into groups by minimizing the sum of intra-cluster variances. Then 
principal component analysis (PCA) with kernel density estimation (KDE) is adopted to capture high-density 
regions of the uncertain forecast errors from historical weather data (Hu et al., 2022).  
Fist, the sample covariance matrix S is given by: 
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We obtain TS PΛP  by adopting eigenvalue decomposition. The square matrix 1[ ,..., ]mP p p  contains all the 
m eigenvectors and 1diag{ ,..., }m Λ  represents a diagonal matrix containing all the eigenvalues. By adopting 

the KDE method to the matrix (1) ( )
1[ ,..., ]k

N
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data sample onto the k-th principal component, distributional information along the k-th principal component can 
be extracted. Let kξ  denotes the latent uncertainty along the k-th principal component.  ( )ˆ k
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estimated probability density function for kξ  , which is shown as 
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where  ( )ˆ k
KDE kf ξ  is the estimated probability density function for kξ  and Kh denotes a Gaussian kernel with a 

bandwidth h (Shang et al., 2017).  ( )ˆ k
KDE kF ξ  the cumulative density function of latent uncertainty kξ . The quantile 

function is , 
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where  ( )ˆ k
KDE kF ξ  is the cumulative density function of latent uncertainty kξ , and   is the determined quantile 

(Ning et al., 2018). The quantile function facilitates acquiring the confidence interval of latent uncertainty for a 
specific confidence level. Based on the correlations and distributional information learned from uncertainty data, 
the data-driven uncertainty set by using PCA and KDE is shown as: 
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where DKM-PK is the data-driven uncertainty set constructed by PCA and KDE approach for the weather forecast 
errors. The data-driven uncertainty set is now ready to be implemented in the proposed PKDDRMPC framework. 

2.3 Dirichlet process mixture models uncertainty set construction 

Besides the PCA with KDE approach, another effective machine learning technique is Dirichlet process mixture 
model (DPMM) (Ning et al., 2019).  Unlike other machine learning methods, such as Gaussian mixture model 
and K-means, the DPMM can determine the number of clusters systematically and automatically rather than 
specifying this number a priori (Ning et al., 2017). The Dirichlet process is a distribution on distributions. A 
random draw from a Dirichlet process, that is, DP(α, F0), is a distribution F. The uncertainty set can then be 
constructed using variational inference algorithm and can be expressed as the following equation: 
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where μ, s and ψ  are the inference results, Λ is the scaling factor, z denotes the primitive uncertainties, and 
  is the uncertainty budget. 

2.4 Data-driven robust optimization in DDRMPC framework 

In order to ensure the tractability of the DDRMPC problem, affine disturbance feedback (ADF) policy is adopted, 
and control input uk is parameterized according to the past disturbances as follows (Goulart et al., 2006), 

 u h Mw  (12) 

where M and h become decision variables should be solved to determine the control inputs. The original 
intractable optimization problem can now be solved by an off-the-shelf optimization solver to obtain the 
approximate solution, after parameterizing control input (Goulart et al., 2006). 
The corresponding soft-constrained MPC is formulated as,  
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where cc represents a vector that specifies the cost coefficients of different control actuators, S is the constraint 
violation penalty weight matrix, and ε is a slack variable vector for system state constraints (Lu et al., 2020). The 
receding horizon approach is adopted in this sustainable building climate control framework using PCA and 
KDE based DDRMPC (PKDDRMPC), K-means clustering coupled with PCA and KDE based DDRMPC (KM-
PKDDRMPC) and Dirichlet process mixture model DDRMPC (DPMMRMPC). At the beginning of each time 
step, the data of current system states and the forecasted weather disturbances are gathered. The data-driven 
robust optimization problem in Eq(14) can be solved based on the information of current system states and 
weather disturbances, given by x0 and v, to obtain the optimal control inputs (Zhao et al., 2018). The first control 
input of the horizon is then implemented for the current time step, while the rest control inputs are discarded 
(Zhao and You, 2021). In the next time step, the same process is repeated, starting from collecting the data of 
current system states and the forecasted weather disturbances. 

3. Case study 
In this work, a building on the Cornell University campus in Ithaca, New York, is simulated for closed-loop 
thermal comfort control under the PKDDRMPC, KM-PKDDRMPC and DPMMRMPC control framework using 
renewable energy sources. The building has three floors in total with two floors above the ground. The dimension 
of this building is 43.28 m × 20.38 m (Tian et al., 2019). The system states controlled in this work is thermal 
comfort, a combination of temperature and humidity. Ambient temperature, relative humidity, and solar radiation 
are considered disturbances. The simulation is performed for one week during January 1-7, 2020. The weather 
forecast data from January 1-7, 2020 are collected for the simulations. 
Figure 1 shows the profiles during January 1-7, 2020 under PKDDRMPC, KM-DDRMPC, and DPMMRMPC 
frameworks. Figure 1(a) shows the temperature profiles. Due to the cold weather in winter, heat pumps operate 
most of the time to heat the building’s indoor environment. Since PMV index is the actual controlled variable 
instead of temperature, there are no maximum and minimum constraints on temperatures. The temperature 
profiles throughout the three uncertainty sets are still maintained within a small region. Figure 1(b) shows the 
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relative humidity. As the contribution of humidity to PMV index is not as large as temperature, the fluctuations 
of humidity are larger than temperature. However, the PMV index can still be controlled as shown in Table 1. 
Table 1 presents the control performances in terms of PMV index, electricity cost, and violation percentage 
under PKDDRMPC, KM-PKDDRMPC, and DPMMRMPC frameworks. The lower and upper bounds are set as 
-0.5 and 0.5, respectively. When the PMV index is less than -0.5, the climate is too cold for the occupants. The 
PMV indices are mainly maintained at the lower bound for both frameworks. Constraint violations occur 
occasionally due to the slight chances of forecast errors not within the constructed uncertainty sets. While both 
approaches avoid the constraint violation during most of the time, the proposed KM-PKDDRMPC still performs 
better than PKDDRMPC with fewer constraint violations. In addition, KM-PKDDRMPC results in 2.2% less 
electricity cost than PKDDRMPC. Less electricity cost and fewer constraint violations are due to the K-means 
clustering, which better captures the shape of uncertainty data. DPMMRMPC has similar result to KM-
PKDDRMPC with slightly higher electricity cost and the same violation percentage. The advantage of the 
proposed KM-PKDDRMPC is demonstrated. 

 

Figure 1: The indoor climate profiles of the sustainable building on the Cornell University campus with renewable 
energy systems during January 1-7, 2020 comparing PKDDRMPC, KM-PKDDRMPC, and DPMMRMPC (left) 
for temperature; (right) for relative humidity 

Table 1: Control performances under PKDDRMPC, KM-PKDDRMPC, and DPMMRMPC on January 1-7, 2020 

Control Strategies PKDDRMPC KM-PKDDRMPC DPMMRMPC 
PMV Index [min, mean, max] [-0.527, -0.413, -0.298] [-0.541, -0.421, -0.300] [-0.513, -0.412, -0.297] 
Electricity cost ($) 268.5 262.7 263.0 
Violation percentage (%) 0.60 0.30 0.30 

4. Conclusions 
We proposed a DDRMPC framework for building climate control with renewable hybrid energy systems to 
minimize the total control cost and to maintain thermal for occupants. The adoption of K-means clustering 
coupled with PCA and KDE and DPMM approaches can better capture the shape of the high-density region of 
the forecast error data. PV panels and earth source heating are utilized to reduce the electricity cost. A case 
study of controlling the PMV index of a building on the Cornell campus is presented. The results showed that 
the proposed framework could minimize total control cost and constraint violation for PMV index. The advantage 
of the KM-PKDDRMPC framework is shown with minor constraint violation and 2% less energy use. 

References 

Bemporad A., Morari M., 1999, Robust model predictive control: A survey, Robustness in Identification and 
Control, Springer, London, 207-226. 

Butcher J.C., 2016, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Chichester, UK. 
Chen L., Du S., He Y., Liang M., 2018, Robust model predictive control for greenhouse temperature based on 

particle swarm optimization, Information Processing in Agriculture, 5(3), 329-338.  
Chen W.-H., Shang C., Zhu S., et al., 2021, Data-driven robust model predictive control framework for stem 

water potential regulation and irrigation in water management, Control Engineering Practice, 113, 104841. 
Chen W., You F., 2021, Smart greenhouse control under harsh climate conditions based on data-driven robust 

model predictive control with principal component analysis and kernel density estimation,  Journal of Process 
Control, 107, 103-113. 

503



Chen W., 2022, Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-
Driven Robust Model Predictive Control,  IEEE Transactions on Control Systems Technology, 30, 1186-1197. 

Chen W., Mattson N.S., et al., 2022, Intelligent control and energy optimization in controlled environment 
agriculture via nonlinear model predictive control of semi-closed greenhouse,  Applied Energy, 320, 119334. 

Blei, D., Jordan M.I., 2006, Variational inference for Dirichlet process mixtures, Bayesian Analysis, 1, 121.  
Fay D., Ringwood J.V., 2010, On the influence of weather forecast errors in short-term load forecasting models, 

IEEE Transactions on Power Systems, 25(3), 1751-1758. 
Goulart P.J., Kerrigan E.C., Maciejowski J.M., 2006, Optimization over state feedback policies for robust control 

with constraints, Automatica, 42(4), 523-533.  
Hartigan J.A., Wong M.A., 1979, Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal 

Statistical Society, Series C (Applied Statistics), 28(1), 100-108.  
Hu G., You F., 2022, Renewable energy-powered semi-closed greenhouse for sustainable crop production 

using model predictive control and machine learning for energy management, Renewable & Sustainable 
Energy Reviews, DOI: 10.1016/j.rser.2022.112790 

Li X., Wen J., 2014, Review of building energy modeling for control and operation. Renewable and Sustainable 
Energy Reviews, 37, 517-537. 

Lu S., Lee J.H., 2020, Soft-constrained model predictive control based on data-driven distributionally robust 
optimization, AIChE Journal, 66, e16546. 

Morari M., Lee J.H., 1999, Model predictive control: past, present and future, Computers & Chemical 
Engineering, 23(4), 667-682. 

Ning C., You F., 2017, Data-Driven Adaptive Nested Robust Optimization: General Modeling Framework and 
Efficient Computational Algorithm for Decision Making Under Uncertainty, AIChE Journal, 63, 3790-3817. 

Ning C., 2018, Data-driven decision making under uncertainty integrating robust optimization with principal 
component analysis and kernel smoothing methods, Computers & Chemical Engineering, 112, 190-210. 

Ning C., You F., 2019, Optimization under uncertainty in the era of big data and deep learning: When machine 
learning meets mathematical programming, Computers & Chemical Engineering, 125, 434-448. 

Ogunjuyigbe A.S.O., Ayodele T.R., Akinola O.A., 2016, Optimal allocation and sizing of PV/Wind/Split-
diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of 
remote residential building, Applied Energy, 171, 153-171.  

Self S.J., Reddy B.V., Rosen M.A., 2013, Geothermal heat pump systems: Status review and comparison with 
other heating options, Applied Energy, 101, 341-348.  

Shang C., Huang X., 2017, Data-driven robust optimization based on kernel learning, Computers & Chemical 
Engineering, 106, 464-479. 

Shang C., You F., 2019, A data-driven robust optimization approach to scenario-based stochastic model 
predictive control, Journal of Process Control, 75, 24-39. 

Shang C., 2019, Data analytics and machine learning for smart process manufacturing: Recent advances and 
perspectives in the big data era, Engineering, 5(6), 1010-1016.  

Shang C., Stroock A.D., et al., 2020, Robust Model Predictive Control of Irrigation Systems With Active 
Uncertainty Learning and Data Analytics, IEEE Transactions on Control Systems Technology, 28, 1493-1504. 

Standard ASHRAE, 2010, Standard 55-2010: Thermal environmental conditions for human occupancy. 
American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta.  

Sturzenegger D., Gyalistras D., Morari M., Smith R.S., 2016, Model predictive climate control of a Swiss office 
building: Implementation, results, and cost–benefit analysis, IEEE Transactions on Control Systems 
Technology, 24(1), 1-12. 

Sun L., Kaufman M.F., Sirk E.A., et al., 2022, COVID-19 impact on an academic Institution's greenhouse gas 
inventory: The case of Cornell University,  Journal of Cleaner Production, 363, 132440. 

Tian X., You F., 2019, Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, 
and geothermal heat and power,  Applied Energy, 250, 413-432. 

Tian X., Zhou Y., Morris B., et al., 2022, Sustainable design of Cornell University campus energy systems toward 
climate neutrality and 100% renewables,  Renewable & Sustainable Energy Reviews, 161, 112383. 

Yang S., Wan M.P., Ng B.F., Zhang T., Babu S., Zhang Z., Chen W., Dubey S., 2018, A state-space thermal 
model incorporating humidity and thermal comfort for model predictive control in buildings, Energy and 
Buildings, 170, 25-39. 

Zhao N., You F., 2021, New York State's 100% renewable electricity transition planning under uncertainty using 
a data-driven multistage adaptive robust optimization approach with machine-learning, Advances in Applied 
Energy, 2, 100019. 

Zhao N., You F., 2022, Sustainable power systems operations under renewable energy induced disjunctive 
uncertainties via machine learning-based robust optimization, Renewable and Sustainable Energy Reviews, 
161, 112428.

504




