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The world annual hydrogen demand continues to increase with a direct impact on the global CO2 emissions. A 
potential solution is the production of CO2-neutral hydrogen (green hydrogen) using renewable resources. In 
addition to electrolytic hydrogen, biogenic hydrogen can increase productivity and enable the expansion of the 
H2 economy for regions with low availability of solar and wind, such as central Europe. In this work, the design 
of a decentralized biogas-to-hydrogen process (50 Nm3 h-1 H2 productivity) based on an electrically heated 
reformer was developed. An economic analysis has established the viability of this suggested production route: 
the Hydrogen production price remains below 6 € kg-1. It results that this innovative process requires 
approximately 0.6 Nm3 of biogas and 1.25 kWh of renewable electricity to produce 1 Nm3 of hydrogen.  

1. Introduction 

The annual world hydrogen demand accounts for approximately 74 Mt (IEA, 2019). Hydrogen is used to produce 
chemicals such as ammonia and methanol and as a reagent in refineries. It is also used as fuel for energy 
production via directly hydrogen combustion or within fuel cells that produce electricity. 
At present, approximately 90 % of the total H2 is obtained from steam reforming of natural gas (SMR) (IEA, 
2019). Usage of the standard processes to boost hydrogen production will lead to an increase in greenhouse 
gases (GHG) emissions. Alternative technologies are the partial oxidation (POX), the partial catalytic oxidation 
(CPOX), and the autothermal reforming (ATR). These processes could be coupled with carbon capture and 
storage (CCS), leading to blue hydrogen (French, 2020). In 2020, the European Commission published the 
European Hydrogen Strategy where it is clearly stated the key role that hydrogen will play as a fuel and energy 
carrier for the energy transition. Additionally, electrolysis, biomass gasification and biogas reforming have been 
identified as key production technologies (European Commission, 2020). 
The present work proposes the design of a decentralized process for producing renewable hydrogen via 
electrified reforming of biogas. The process scheme was simulated with Aspen Plus®. The ultimate configuration 
produces approximately 1.6 Nm3 h-1 of hydrogen from 1 Nm3 h-1 of biogas made of 50:50 methane and carbon 
dioxide. The energy efficiency of the process is approximately 87 %.  

2.  Methods 

As in traditional hydrogen plants, this biogas-to-hydrogen scheme also comprises three main sections: 
reforming, water gas-shift (WGS), and separation (Figure 1). Aspen Plus® solved the mass and energy balances 
using Peng-Robinson with the Boston-Mathias alpha function as the thermodynamic model. The steam reformer 
was modelled as a Gibbs reactor (RGibbs) working at equilibrium. The water gas shift section was modelled 
with two adiabatic equilibrium reactors (REquil), operating at equilibrium, where only the WGS reaction takes 
place. This is necessary and is commonly done to avoid the production of methane, which is thermodynamically 
the most favored product. 
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2.1 Process description 

The reforming section is mainly driven by the following equilibrium reactions: 

CH4 + H2O ⇌ 3H2 + CO (1) 

CH4 + CO2 ⇌ 2H2 + 2CO (2) 

CO + H2O ⇌ CO2 + H2 (3) 

SMR (1), dry reforming (DR) (2), and WGS (3). Both reforming reactions are endothermic with ∆H298 = 206 kJ 
mol-1 for SMR and 247 kJ mol-1 for DR (Xu and Froment, 1989), while the WGS reaction is exothermic with 
∆H298 = -41 kJ mol-1. Both reforming reactions lead to a higher number of moles. The reformer converts 0.66 
kmol h-1 and operates at 15 bar and 950 °C with a steam to carbon ratio (S/C) of 2. Commercially Ni-based 
catalysts can operate under these conditions without coke formation (Lavoie, 2014). These conditions also favor 
a higher H2/CO ratio which is essential for hydrogen production. The lower pressure compared to the typical 
value of approximately 30 bar is used to reduce the carbon forming potential, which is high when reforming CH4, 
H2O, and CO2 mixtures. At the same time, the lower pressure enhances the conversion of methane (Seo et al., 
2002), which is typical for the electrically heated SMR process. 
The WGS reaction is completed in two steps respectively, working from 330 °C to 470 °C (high-temperature 
WGS, HT-WGS) and from 195°C to 235 °C (low-temperature WGS, LT-WGS). The inlet temperature of the two 
WGS steps is in line with the requirements of commercial WGS catalysts (Johnson Matthey PLC) Fe/Cr and Cu 
based. An excess of water is needed to avoid hydrocarbon formation by Fischer-Tropsch reaction in the HT-
WGS stage and preserve the catalyst activity in the LT-WGS. In particular, a reduction ratio below 1.9 is required 
at the entrance of the HT-WGS step, where the reduction ratio is defined as below : 
 

𝑅 =  (
𝐶𝑂 + 𝐻2

𝐶𝑂 +  𝐻2𝑂
) ∙ (

𝑃

26
) (4) 

 
where all the species are defined in volume fraction and P is the pressure in bar. 
Similarly, the syngas entering the WGS must have a wet-to-dry ratio (W/D) greater than 1.3 (Johnson Matthey 
PLC), where the W/D ratio is given by the molar flowrate of water divided by the sum of the molar flowrates of 
all species excluding water. To fulfil these requirements, an injection of water downstream of the reformer has 
been used. Using water at 25°C as a quenching medium makes it possible to achieve the required reduction 
ratio and temperature needed at the entrance of the HT-WGS. Additionally, using a quench results simpler and 
cheaper in terms of operational and capital costs in comparison to a waste heat boiler. 
The waste heat boiler for the production of the dilution steam fed to the reformer is located between the two 
WGS steps. The production of steam (15 atm, 255 °C) in this equipment enables cooling down the syngas to 
the temperature required at the inlet of the LT-WGS. 
After the WGS step, the product mixture is cooled down to condense the remaining excess steam present in 
the H2-rich syngas. After taking out the condense in a two-phase separator, the product mixture is sent to a  
PSA (pressure swing adsorption) unit for purification. Given the gas composition and pressure, a recovery 
efficiency of about 85 % with a H2 purity of 99.9 % seems reasonable for an industrial PSA (Hygear, 2020).  A 
part of the H2 is left in the PSA off-gases (S-22), where unreacted CH4 and CO coexist. As this stream contains 
an appreciable amount of energy and cannot be vented due to the presence of toxic and polluting gases, it is 
integrated within the process. For this purpose, it is burned with 10 % air excess and is used to preheat the 
reactive mixture up to 650 °C, i.e. the typical cross-over temperature for modern reformers (Rostrup-Nielsen 
and Christiansen, 2011). Biogas feed cannot be mixed directly with the steam arriving from the boiler to avoid 
partial condensation. The boiling feed water required for the correct operation of the waste heat boiler is 
produced by preheating pressurized demi water to near-saturation conditions. This required duty comes from 
the flue gases produced via combustion of the PSA off-gases. 
The fermenter requires approximately 1.2 kW of thermal energy supplied as hot water at 40 °C to be able to 
produce 1 Nm3 h-1 of biogas via anaerobic digestion (Benato and Macor, 2019). For this reason, the herein 
described hydrogen production plant must supply 37 kW of thermal energy. This is achieved using a water 
preheater exchanger and part of the duty of the water economizer where water is heated respectively to 45 °C 
and 170 °C. A mixture of these two streams at 50 °C  (S-17 and S-18) is sent to the anaerobic digestor. 
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Figure 1: Process scheme of the developed biogas to hydrogen route. 

2.2 Economic assessment 

The described biogas-to-hydrogen process produces renewable hydrogen, which has a current market price 
that varies from 7 € Kg-1 to 9 € Kg-1 (IEA, 2019). 

Table 1:  Price of consumables and reactants used in the case study. 

Chemical Price Reference 
Biogas 0.25 € Nm-3 (Benato and Macor, 2019) 
Demineralized H2O 2.7 € m-3 (ICIS, 2022) 
Renewable electricity 150 € MWh-1 (Irena, 2021) 
 
The capital expenditure (CAPEX) is depreciated over an operational plant lifetime of 15 years. The CAPEX for 
a production plant of 100 Nm3 h-1 H2 is approximately 1 M€ (Rostrup-Nielsen and Christiansen, 2011). 
Considering 0.77 as the scale-down factor for H2 (Towler and Sinnot, 2008), a CAPEX of 580 K€ is reasonable 
for an installation of about 50 Nm3 h-1. 
The following economic indicators are used for comparison: 

• the Operating Expenditure (OPEX) considering 8000 h y-1 of operation 
• the hydrogen production cost (HPC) (Eq. 5) 

𝐻𝑃𝐶 [€ 𝑘𝑔−1] = 𝑂𝑃𝐸𝑋 [€] +
𝐶𝐴𝑃𝐸𝑋[€]

𝑦𝑒𝑎𝑟𝑠[𝑦]
∙ (𝐻2𝑝𝑟𝑜𝑑[𝑘𝑔 ℎ−1] ∙ ℎ𝑜𝑢𝑟𝑠[ℎ])

−1 (5) 

• the yearly profit (Eq. 6): 

𝑃𝑟𝑜𝑓𝑖𝑡 [€ 𝑦−1] = (𝐻2𝑝𝑟𝑜𝑑[𝑘𝑔 ℎ−1] ∙ ℎ𝑜𝑢𝑟𝑠[ℎ] ∙ 𝐻2𝑝𝑟𝑖𝑐𝑒[€ 𝑘𝑔−1]) − 𝑂𝑃𝐸𝑋 [€] −
𝐶𝐴𝑃𝐸𝑋[€]

𝑦𝑒𝑎𝑟𝑠 [𝑦]
      (6) 

• the % of OPEX defined as 

%𝑜𝑝𝑒𝑥 = 𝑂𝑃𝐸𝑋 [€] ∙ (𝑂𝑃𝐸𝑋 [€] +
𝐶𝐴𝑃𝐸𝑋[€]

𝑦𝑒𝑎𝑟𝑠[𝑦]
)

−1

 (7) 

Since the recovery of the PSA is the most important factor affecting the H2 productivity, the abovementioned 
parameters are calculated for a recovery ranging between 85 % and 75 % to investigate more pessimistic 
scenarios. Moreover, a sensitivity analysis on the above-described economic indicators has been performed. 
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The cost of biogas and electricity have been varied respectively from 0.2 € Nm-3 to 0.3 € Nm-3 and from 0.05 € 
kWh-1 to 0.20 € kWh-1. The cost of demineralized water is maintained constant.  

2.3 Key performance indicators 

The primary indices used for assessing the process performance are the following: 
• methane conversion in the reformer, 
• H2/CO selectivity in the WGS section, 
• H2 production to biogas ratio, 
• specific electricity consumption, 
• process efficiency based on LHV of reagent and products, electricity consumptions, with and without 

considering the thermal integration of the process with the fermenter. 

3. Result 

3.1 Mass balance and energy requirements 

Process mass balances refers to a plant that produce 50 Nm3 h-1 hydrogen (4.5 kg h-1) (Table 2).  

Table 2: Mass balance of the developed biogas to hydrogen process. 

Stream S-4 S-5 S-6 S-7 S-9 S-11 S-12 S-24 S-28 
Temperature [°C] 650 950 332 470 236 50 50 1010 55 
Mole Flow [kmol h-1] 2.72 4.04 5.63 5.63 5.63 4.02 2.23 2.81 68.5 
Mass Flow [kg h-1] 65.3 65.3 94.0 94.0 94.0 64.9 4.50 96.2 1233.6 
Mole Fraction          
H2O 0.50 0.25 0.46 0.33 0.29 0.01 0.00 0.17 1.00 
CO2 0.25 0.09 0.07 0.20 0.24 0.33 0.00 0.48 0.00 
CH4 0.25 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
H2 0.00 0.42 0.30 0.43 0.47 0.65 1.00 0.00 0.00 
CO 0.00 0.24 0.17 0.04 0.00 0.01 0.00 0.00 0.00 
N2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 
O2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
 
The process uses 30.9 Nm3 h-1 (40.8 kg h-1) of biogas (50% CH4, 50% CO2) and 53.3 kg h-1 of water for hydrogen 
production. The economic assessment does not consider the additional water used as a medium to integrate 
the hydrogen-producing plant and the fermenter. 
Energy requirements for the different equipment are reported in Table 3, together with an indication of whether 
the equipment is thermally integrated or not. Almost all the units are integrated except the reformer and the 
biogas compressor that use external electricity. This equipment uses respectively 57 kW and 6 kW. The H2O 
preheater (approximately 30 kW) and the water economizer (approximately 7 kW) supply the thermal energy 
necessary in the thermophilic digester that produces biogas. Under average year operations, the thermal 
consumption of the digester is 0.73 kWh per 1 Nm3 H2 produced.  

Table 3: Energy requirements for the different equipment of the biogas to hydrogen process. 

Unit Energy requirements, kW 
Compressor 5.9  (not integrated) 
Biogas preheater 3.0  (integrated) 
Reformer 56.6  (not integrated) 
Mixture preheater 14.8  (integrated) 
Quench 24.8 (integrated) 
Waste heat boiler 15.4  (integrated) 
H2O preheater 29.7  (integrated) 
H2O economizer 11.6  (integrated) 

3.2 Key performance indicators 

According to Table 4, the methane conversion is equal to 97 %; thus, a minimal amount of methane remains 
unreacted and leaves the PSA in the off-gases stream. The process leads to syngas with an H2/CO ratio of 
approximately 1.7. This ratio is unusual for a traditional H2 production plant based on SMR, but it is related to 
the high concentration of CO2 present in the biogas feed. In particular, not only SMR but also DR take within 
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the e-SMR. For this reason, in the herein described process, it is crucial to push the WGS reaction using both 
high and low-temperature steps. The reached CO conversion is higher than 98%. Assuming that the PSA has 
an H2 recovery efficiency of 85%, the process produces approximately 1.6 Nm3 of H2 per 1 Nm3 of fed biogas. 
Compared to a biogas reforming configuration, the H2 productivity is increased by approximately 60 % (1.6 Nm3 
vs 1.0 Nm3). This is possible because no biogas is fed to the burners and because the water gas shift is pushed. 
At the same time, approximately 1.25 kWh of electricity is used in the e-SMR to compensate for the reaction 
endothermicity. 

Table 4: Key performance indicators of the developed biogas to hydrogen process. 

Parameter Value 
CH4 conversion [%] 97.3 
H2/CO selectivity [%] 
H2/biogas ratio [-] 

98.0 
1.65 

Specific power in the reagents [kWh Nm-3 biogas] 4.91 
Specific external energy demand [kWh Nm-3 biogas] 2.03 
Specific external energy demand [kWh Nm-3 H2] 
Specific energy in the products [kWh Nm-3 biogas] 
Specific energy to fermenter [kWh Nm-3 biogas] 
Thermal efficiency without fermenter [%] 

1.25 
4.86 
1.20 
70.0 

Thermal efficiency with fermenter [%] 87.3 
 
The thermal efficiency of the process is approximately 70% without considering the integration of the thermal 
energy between the hydrogen-producing plant and biogas digester. If this integration is completed, the efficiency 
increases to 87%, comparable to a large-scale centralized SMR (Rostrup-Nielsen and Christiansen, 2011). 
Considering that the efficiency of traditionally biogas plants that produce electricity (2 kWel per 1 Nm3 of biogas) 
using an internal combustion engine and an alternator is approximately 35%, the described H2 production route 
is twice higher (Benato and Macor, 2019). Therefore, considering the renewable energy market related to the 
biogas section within Italy, it will be possible to increase the energy production from 8.3 TWh to 16.6 TWh. 

3.3 Economic analysis 

The economic indexes (Table 5) show the economic feasibility of the process based on the selling price of the 
green hydrogen of about 7 € Kg-1. The operating costs account for approximately 75 % of the hydrogen 
production costs. It is evident how the recovery of the PSA is a crucial parameter and strongly influences the 
profit of the process. On the other hand, for all possible values of this parameter, the process stays profitable.  

Table 5: Economic parameters for the biogas-to-hydrogen process for the investigated PSA recovery range. 

Economic indexes 85 % recovery 80 % recovery 75 % recovery 
H2 productivity [Nm3 h-1 ] 50 47.1 44.1 
OPEX [€ y-1] 137000 137000 137000 
% OPEX 78 78 78 
H2 production cost [€ kg-1] 4.9 5.19 5.54 
Profit [€ y-1] 76000 61000 46000 
 
Figure 2 shows the influence of the electricity price on the H2 production cost (left) and the related annual profit 
(right) at different biogas prices. Within the considered range for electricity price (50 € MWh-1 to 200 € MWh-1), 
the hydrogen production cost doubles from 4 € kg-1 to 6 € kg-1.  
The reported biogas to hydrogen process becomes economically unattractive when electricity costs more than 
200 € MWh-1. Indeed, even at the lower biogas price, the H2 production cost is higher than the selling price. At 
the same time, such a high electricity price is unrealistic for renewable electricity already produced at prices well 
below 100 € MWh-1 (IRENA, 2021). 
The H2 production cost strongly depends on electricity (43 % of the total cost using the price reported in Table 
1), while biogas has a much smaller influence. Moreover, it is also clear that for prices above 100 € MWh-1, the 
electrification of high-temperature thermochemical processes, such as SMR, is not convenient (Mion et al., 
2022). Under these renewable energy prices, traditional fired configurations are economically favored (Roelofse 
et al., 2020). 
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Figure 2: Effect of the electricity price on the H2 production cost (left) and the annual profit (right) at different 

biogas prices. 

4. Conclusions 

The present work proposes the design of a decentralized biogas-to-hydrogen process (50 Nm3 h-1) based on an 
electrically heated reformer. The reforming section runs at 15 bar, 950 °C and a steam-to-carbon ratio of 2, and 
it is followed by a two-steps water gas shift at an inlet temperature of 330 °C and 194 °C respectively. Under 
these conditions, the process achieves a methane and carbon monoxide conversion of 97% and 98%, 
respectively, ensuring an H2/CO ratio for the syngas of approximately 1.7.  
This innovative route requires approximately 0.6 Nm3 of biogas and 1.25 kWh of renewable electricity to produce 
1 Nm3 of hydrogen. Its thermal efficiency is about 70%, which is higher than that of a conventional plant burning 
biogas in a thermal engine. The thermal efficiency is increased to 87% if the hydrogen-producing plant and 
biogas digester are fully integrated, making it comparable to a large-scale centralized SMR.  
According to the economic analysis, the suggested decentralized biogas-to-hydrogen route is viable and 
provides hydrogen at a price below 6 € kg-1. 
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