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Tetracycline is one of the most widely prevalent antibiotics, and it is used for both veterinary and human medical 
care purposes. Tetracycline is not fully absorbed in the digestive tract of humans and animals, and it is estimated 
that approximately 50% is excreted through urine and faeces and enters the environment as the parent 
compound of one of its metabolites. Conventional wastewater treatment processes have been shown to be 
inefficient in degrading tetracycline resulting in bioaccumulation of the compound. Advanced Oxidation 
Processes (AOPs) such as heterogeneous photocatalysis have been shown to be an efficient and eco-friendly 
technology for the removal of refractory organic pollutants from wastewater. This study investigates the use of 
graphitic carbon nitride as a photocatalyst for the degradation of tetracycline in wastewater. The catalyst was 
synthesized through pyrocondensation polymerization. X-ray diffraction analysis confirmed formation of the 
desired material. The efficacy of the synthesized material was investigated using a batch reactor set-up under 
ultraviolet and visible light irradiation. The control adsorption experiments showed 4.4 % tetracycline removal 
after 2 h, while visible light photolysis resulted in 21.9 % degradation in the same period. These results were 
markedly lower than the 76.7 % degradation observed under visible light activated photocatalysis conditions. 
Process parameter optimization experiments revealed that a catalyst loading of 1 gL-1 and pH of 7.00 resulted 
in 77 % tetracycline degradation after 2 h of visible light irradiation.  

1. Introduction 

Water is a valuable resource, vital for sustaining life and it is associated with major human activities such as 
agriculture, industry, and domestic uses. There is an increasing concern about water pollution resulting from the 
release of multiple compounds in water bodies emanating from agriculture, industry, and domestic practices 
worldwide (Deblonde et al., 2011). Micro-pollutants are among the growing list of emerging pollutants released 
from various anthropogenic activities into water bodies, and they pose a threat to the environment and human 
health. Micro-pollutants are persistent and toxic in various water matrices and tend to be bio-accumulative in 
living organisms resulting in negative effects to the environment and human health, even at trace concentration 
(Sauvé and Descrosiers, 2014). This group of pollutants contains, but is not limited to: pharmaceutically active 
compounds (phACs), personal care products, endocrine disruptors, pesticides and industrial chemicals. 
Pollution due to micro-pollutants in groundwater, surface water bodies and soil environment has been 
associated with the collective negative effects along multigenerational contact in aquatic organisms and distress 
human health by becoming a part of the ecosystem (Daughton, 2010).  
The representative pharmaceuticals found in wastewater influent, surface and groundwater samples are 
antibiotics, anti-inflammatory drugs, lip regulators, beta-Blockers and X-ray contrast media (Fekadu et al., 2019). 
Global antibiotics usage exceeds 100 000 tons per year (Danner et al, 2019). There is a growing concern over 
the fate, effects and risks of these compounds and their metabolites substances when released in aqueous 
systems. Tetracycline is regarded as one of the most widely used antibiotics, and it is used to treat and prevent 
bacterial infections in human and veterinary medicine. After administration, tetracycline is not fully absorbed in 
the digestive tract of humans and animals, and it is estimated that approximately 50 % is excreted through urine 
and faeces and enters the environment as the parent compound of one of its metabolites (Saadati et al., 2016). 
The extensive use of this antibiotic in various settings has resulted in its continuous discharge via sewage, 
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improper disposal, drain water or industries into receiving water bodies leading to its persistence in the 
environment (Ben et al, 2019). Conventional water and wastewater treatment processes are found to be 
inadequate for efficient removal of tetracycline antibiotics (Daghrir and Drogui, 2013). 
Photocatalysis, an advanced oxidation process has been shown to be an efficient and eco-friendly technology 
for the removal of refractory organic pollutants from wastewater. Tetracycline can be degraded and mineralized 
effectively through a semiconductor photocatalysis, however selection of an appropriate photocatalyst is vital to 
achieve remarkable efficiency (Gheytanzadeh et al., 2022). Lately, g-C3N4 has received considerable attention 
as an efficient photocatalyst for the remediation of various organic pollutants from water due to its exceptional 
properties such as suitable band gap, high stability, unique electronic properties, affordability, eco-friendly and 
easy modification. However, pure g-C3N4 suffers limitations such as low surface area, rapid recombination of 
photo induced charge carriers, low visible-light absorption and low electronic conductivity (Zhang et al., 2019). 
Various strategies have been explored to overcome these shortcomings. Examples include; controlling catalyst 
morphology, element doping, surface modification and constructing heterojunctions to improve the photocatalyst 
activity (Liang et al, 2021). Porous g-C3N4 was reported to enhance the photocatalytic capability by increasing 
surface area which in turn increases the number of active sites and ultimately preventing the fast recombination 
of photo-induced electron and holes pairs (Liu et al., 2020). In this study, porous g-C3N4 nanosheets 
photocatalyst was synthesised by co-pyrolyzing melamine and ammonium bicarbonate. The degradation 
efficiency of the resultant material was tested on tetracycline polluted water under simulated visible-light 
irradiation. The synthesised photocatalyst was characterised by X-ray diffraction (XRD) to analyse the crystal 
structure of the material.  

2. Material and methods 

2.1 Chemicals and reagents 

Melamine powder, ammonium bicarbonate (NH4HCO3), tetracycline (the organic pollutant) and HPLC grade 
methanol (≥ 99.9 %) were purchased from Sigma Aldrich. All chemicals and reagents were of analytical grade 
and used without further purification. Ultrapure and deionised water was used during the experiment.  

2.2 Catalyst Synthesis 

Porous g-C3N4 nanosheets were prepared though pyrocondensation polymerization with melamine and 
ammonium bicarbonate technique adopted and modified from (Liu et al., 2020). 10 g of each material, melamine 
and ammonium bicarbonate was dissolved in 150 mL of ultrapure water then dried at 95˚C for approximately 24 
hours. The material was then added to an alumina crucible with cover and calcined at 600˚C for 2 hours in 
muffle furnace. After cooling to room temperature, the bulk yellow g-C3N4 was grounded into powder and heated 
at 600˚C for another 2 hours to obtain much thinner g-C3N4 nanosheets. The resulting light-yellow material was 
washed with ethanol (98 %) and ultrapure water three times then dried at 80˚C.  

2.3 Characterisation 

The X-ray diffraction (XRD) spectra of the prepared samples were analysed using a PANalytical X’Pert Pro 
powder diffractometer in θ–θ configuration with an X’Celerator detector and variable divergence- and fixed 
receiving slits with Fe filtered Co-Kα radiation (λ=1.789Å). The mineralogy was determined by selecting the 
best–fitting pattern from the ICSD database to the measured diffraction pattern, using X’Pert Highscore plus 
software. 

2.4 Photocatalytic tests 

Tetracycline stock solution of 100 mg/L concentration was prepared by dissolving 0.1 g of TC in 5 mL of 
methanol before being topped with deionised water to the 1 L mark, thereafter dilutions were prepared from 
these stock solutions to make desired concentrations. The photocatalytic experiments were carried out at 25˚C 
using a sealed batch glass photo-reactor with the capacity of 1 L, equipped with a 450 W visible lamp for visible 
light experiments and 450 W ultraviolet (UV) lamp for UV light experiments. The typical test solutions consisted 
of 500 mL of TC solution (10 mg/L), 0.5 g of the synthesised photocatalyst and a magnetic stirrer to ensure a 
homogeneous solution of the pollutant and catalyst. The test solution was stirred in the dark for 30 minutes to 
reach adsorption-desorption equilibrium. Thereafter, the suspension was irradiated and a 5 mL of aliquots 
samples were collected at certain time interval.  These aliquots were centrifuged for the removal of photocatalyst 
before analysis.  
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2.5 Degradation analytical method 

The concentration of Tetracycline and progressive degradation was analysed using a UV/Visible 
spectrophotometer (Jenway 7205) at a wavelength of 357 nm. The total degradation of tetracycline after 2 h 
was evaluated using the expression shown in equation 1.   

% 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
(𝐶0 − 𝐶𝑡)

𝐶0
× 100 1) 

 
Where, 𝐶0 is the initial tetracycline concentration and 𝐶𝑡 is the concentration of tetracycline at any given time, t. 

3. Results and discussion 

3.1 Catalyst Characterization 

The XRD analysis was conducted to investigate the purity and crystalline structure of the synthesised material. 
The XRD spectra of the material are shown in Figure 1 below. The XRD pattern shows that a hexagonal g-C3N4 

(JCPDS 87-1526) was formed as shown by the distinct diffraction peaks at a 2θ angles of 15˚ and 32˚ which 
correspond to (100) and (002) planes (Praus et al., 2021). The low intensive peak (100) at 2θ = 15˚ correspond 
to the in-plane structuring packing of nitrogen-linked tri-s-triazine unit and the more intensive peak (002) at 2θ 
= 32˚ is related to the interlayer stacking of aromatic structures indexed for graphitic material (Smýkalová et al., 
2021). The more intensive peak (002) and less intensive peak (100) indicates that the materials were well 
crystallised, a graphite-like structure of g-C3N4 was formed (Starukh et al., 2021).  
 
 

 

Figure 1: XRD spectra of the as prepared graphitic carbon nitride photocatalysts 

3.2 Photocatalytic Activity 

The photocatalytic degradation of tetracycline (10 mg/L) using the prepared porous g-C3N4 nanosheets at a 
loading of 1 g/L was evaluated under UV and visible-light irradiation. Control experiments were performed to 
investigate the direct effect of UV and visible-light irradiation on tetracycline (photolysis) as well as the adsorptive 
properties of the catalyst in the absence of light irradiation. The adsorption, photolysis and photocatalysis 
degradation activity are shown in Figure 2.The catalysis experiment (adsorption) without light irradiation had 4 
% degradation in 2 hours which could be the result of the adsorption-desorption equilibrium of tetracycline 
compounds to the surface of photocatalyst in the dark. These results indicate a negligible degradation of 
adsorption in the removal of TC. The photolysis test where tetracycline is degraded without catalyst under 
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visible-light and UV light irradiation had 21.9 % and 28.62 % over 2 hours which shows that there is little bond 
cleavage based on light exposure only. Degradation by direct photolysis is possible for some contaminants at a 
radiation that has wavelength in the range of 200-400 nm (Ichipi et al., 2021). Tetracycline is yellow in colour 
therefore has a major absorption range in wavelength 300-430 nm. This improves TC photodegradation by 
enabling TC molecules to be activated by visible light and to be easily adsorbed on the surface of photocatalyst. 
A photodegradation of approximately 76.28 % and 76.79 % was exhibited under UV and visible-light in 2 hours. 
The outstanding photocatalytic activity is attributed to the enhanced visible light absorption, large surface area 
and efficiency separation of photoexcited carriers of porous g-C3N4 nanosheets photocatalyst (Zhang et al., 
2021).The effect of pH on photodegradation of pollutant was investigated under visible light irradiation at 
selected pH 3, 7, 9 and 11 which represents the acidic, neutral and basic conditions and the results are 
presented in  
Figure 3. At pH 3, 7, 9 and 11, the degradation was 38.18 %, 77.06 %, 61.84 % and 55.06 % over 2 hours. The 
results indicates that TC degradation is minimal under acidic, optimal under neutral and moderate under basic 
pH conditions. Previous researches reported that tetracycline is an amphoteric molecule cationic at pH less than 
3.3, zwitterionic in the pH range of 3.3 – 7.68 and anionic at pH above 7.68 (Guo et al., 2021). The surface 
charge of g-C3N4 has been reported to be positive at pH 3 and negative from pH 7-10.  The photocatalytic 
degradation of TC will be minimal at pH 3, optimal at pH 7 and moderate at pH 9-11 as a result of TC speciation 
and g-C3N4 surface charge. Tang et.al (2022) reported a degradation of 99.3% of TC (5 mg/L) at pH 7 using g-
C3N4 powder catalyst after 4 hours which is lesser as compared to that of the as-synthesized porous g-C3N4 
nanosheets catalyst which had 77 % degradation of TC (10 mg/L) at pH 7 after 2 hours from this study. This 
can be the results of the catalyst morphology and structure (Saadati et al., 2016).   
 

     

Figure 2: Adsorption (without light), photolysis without catalyst (under UV and visible light irradiation) and 

photocatalysis test (Under UV and visible light irradiation) 
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Figure 3: Effect of pH on degradation under visible light irradiation.  

4. Conclusions  

The photocatalytic degradation of tetracycline using the synthesized porous g-C3N4 nanosheets as a 
photocatalyst was investigated. XRD characterization revealed the crystallinity of the synthesized material. The 
photodegradation test indicated that the interaction between catalyst and light is required for a significant 
degradation of TC. The porous g-C3N4 nanosheets catalyst is efficient under both UV and visible light irradiation, 
which is attributed to the exceptional intrinsic properties of the material. It is interesting to note that the efficacy 
of visible light photocatalysis was similar to the UV light conditions even though the later provides higher energy 
photons. pH optimization studies showed that TC degradation is pH dependent, optimum degradation can be 
achieved at pH 7. This study shows the potential use of a visible-light activated g-C3N4 for remediation of 
tetracycline in the aquatic environment.  
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