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Anaerobic digestion (AD) is a technology that produces biogas, also known as renewable natural gas, from 
organic waste materials under the activity of anaerobic microorganisms. In recent years, an increasing attention 
on energy produced from renewable resources has led to the need and development of tools helping with 
improving the process performance and design of AD, such as the Anaerobic Digestion Model No.1 (ADM1). 
ADM1 is a process-based model that can predict the biogas yield and identify potential prohibitions in the AD 
process from the properties of the feedstock and inoculum. Initial values of state variables and model parameters 
need to be calibrated when applying ADM1 to a particular feedstock. In this study, an ADM1 model using 
differential algebraic equations (DAE) system, called DAE ADM1, was developed. Specifically, the influence of 
the initial values of AD process state variables on the calibration of model stoichiometric and kinetic parameters 
were investigated, by comparing them with literature data, by highlighting their high impact on the model setup.  

1. Introduction 

Anaerobic Digestion (AD) is a process in which microorganisms degrade organic matter in the absence of air 
and produce biogas and digestate. The feedstocks for AD process can be sewage sludge, organic fraction 
municipal solid waste, manure etc., and the biogas produced is an important renewable energy. AD process 
offers environmental and economic benefits (Sahoo and Mani, 2019). AD process modelling plays an important 
role on AD plants design and operation optimisation (Fedailaine et al., 2015). Simulation results, in fact, allow a 
preliminary assessment of the process stability and biogas generation potential, with the possibility to easily 
analyse different co-digestion scenarios and operation conditions (Donoso-Bravo et al., 2011). The Anaerobic 
Digestion Model No.1 (ADM1) was developed by the International Water Association (IWA) AD Modelling Task 
Group (Batstone et al., 2002) to produce a generic model and common platform for dynamic simulations of AD 
processes. ADM1 is generally used for continuous stirred-tank reactors (CSTR), and includes 19 biochemical 
processes (describing reactions of disintegration, hydrolysis, acidogenesis, acetogenesis and methanogenesis, 
plus three gas-liquid transfer processes and six acid-base kinetic processes). These processes describe 
conversions between 36 state variables (Table 1). On the basis of the study of Batstone et al. (2002), Rosen 
and Jeppsson (2006) successively developed the IWA benchmark simulation model 2 (BSM2) framework to link 
ADM1 with the activated sludge model (ASM), forming a plant-wide model for wastewater treatment plants. 
BSM2 has become a benchmark for studies using ADM1 because of the detailed description of the AD acid-
base processes, together with the recommended values for model stoichiometric and kinetic parameters. 
Numerous parameters are needed for ADM1 simulations, including input values of state variables related to the 
feedstock characteristics, initial values of state variables dependent on the inoculum characteristics and more 
than 100 model stoichiometric and kinetic parameters. These parameters need to be calibrated by experimental 
observations so that the model can describe and predict well the behaviour of an AD system treating a specific 
feedstock (Thamsiriroj and Murphy, 2011). However, long-term and regular tests of the digestate characteristics 
are usually lacking in the industrial AD systems, as they often require specific and high accuracy equipment 
(Yan et al., 2021). This has impeded the application of ADM1 model in industry. 
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ADM1 input values can be roughly estimated by COD fractioning method from the particulate Chemical Oxygen 
Demand (COD) and soluble COD of the feedstock (Catenacci et al., 2021). For the determination of the 
stoichiometric and kinetic parameters when applying ADM1 to a specific feedstock, most parameters remain at 
the values provided in BSM2, and only about 10 sensitive parameters that have a large influence on model 
outputs will be calibrated. They can be decided through a sensitivity analysis (Nguyen, 2014; Thamsiriroj and 
Murphy, 2011). The calibration of these sensitive parameters to fit experimental data can be achieved either by 
heuristic manual adjustment (Nguyen, 2014) or by parameter optimisation algorithms (Baldé et al., 2020). In 
general, ADM1 studies listed the obtained values of sensitive stoichiometric and kinetic parameters from 
calibration, but most studies did not demonstrate how the initial values of state variables were determined and 
the specific values used, making published ADM1 modelling results hard to be replicated. Being ADM1 based 
on an ordinary differential equation (ODE) system, initial values of its state variables are crucial for the simulation 
outputs. The initial values, in fact, set how the ODE system iterations start, and they also affect the state 
variables increments at each time step. Additionally, the initial values of some state variables, such as the 
concentrations of the degrading bacteria, of hydrogen and methane dissolved in the liquid phase, are not easy 
to measure, and this is the main reason why they require to be calibrated together with stoichiometric and kinetic 
parameters by experimental data. However, when calibrating the model for multiple iterations by using the long-
term running CSTR AD data, it can happen that the influence of possible inaccurate initial values becomes 
negligible (Arianna et al., 2021). In this case, the generic initial values, such as steady-state outputs from BSM2, 
can be used when calibrating the model for the first iteration. When data for model calibration are limited, initial 
values of stoichiometric and kinetic parameters become therefore important to achieve an effective AD 
processes prediction and a good system performance.  
This paper investigates the effect of initial values on the calibration of the representative model parameters 
which can accurately predict the performance of the AD systems for a specific feedstock, especially when limited 
AD plant data are available for model calibration. Specifically, an ADM1 composed of differential algebraic 
equations (DAEs) was developed, called DAE ADM1, and verified via using BSM2 steady-state outputs. The 
influence of initial values was illustrated by reproducing the model calibration and validation stages results from 
a literature study (Nguyen, 2014). 

2. Method 

2.1 Anaerobic Digestion model structure 

Standard ADM1 model simulates the AD process in CSTR reactors without recycling of digestate, by assuming 
that the bulk volume in the digester remains constant over time and inflow equals outflow (Batstone et al., 2002). 
The equation used in the DAE ADM1 code, describing the change of concentrations of soluble and particulate 
state variables with time, is shown in Eq(1). 

                                                                   
dS(X)i,in

dt =  
q*S(X)i,in

Vliq
− 

q*S(X)i,liq

Vliq
+  ∑ ρjνi,j

j=1-19

                                                       (1) 

where ρj is the kinetic rate for process j; νi,j is the stoichiometric coefficient for the state variable i in the reaction 
process j; q is the inflow and outflow, S(X)i,in and S(X)i,liq are the concentrations of the soluble or particulate 
state variable i in the inflow and in the reactor, respectively, and Vliq is the liquid phase volume in the reactor.  
The ODEs for the acid-base kinetic processes for VFAs, inorganic carbon (IC) and inorganic nitrogen (IN) are 
implemented as suggested by Rosen and Jeppsson (2006). The term ∑ ρjνi,jj=1-19  is added to the free form VFA, 
IC and IN, while the ODE describes the converting from the free form VFA, IC or IN to the base form VFA, 
bicarbonate or ammonia is described in Eq(2) (taking valerate as an example).  

                                                           
dSVa-

dt =  −κA B⁄  Va ∙ (SVa- ∙ SH+ − Ka,Va ∙ (SVa − SVa-))                                                    (2) 

where κA B⁄  Va is the acid-base kinetic constant of valerate and Ka,Va is the acid dissociation constant of valerate.  
By assuming that the amount of gas components (Sgas) in the inflow (Table 1) was negligible, the ODEs 
describing the production of methane (CH4) and carbon dioxide (CO2) are shown in Eq(3) and Eq(4) (written as 
function of hydrogen, H2). 

                                                                     
dSgas,H2

dt =  − 
qgas∙Sgas,H2

Vgas
+  ρT,H2

∙
Vliq

Vgas
                                                                 (3) 

                                                          ρT,H2
=  κLaH2 ∙ (SH2 − 16KH,H2 ∙ pgas, H2

)                                                             (4) 
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where Sgas,H2  is the concentration of H2 in the gas phase, while SH2  is the concentration of H2 in the liquid 
phase. Vgas is the volume of gas phase. κLaH2 is the overall gas-liquid mass transfer coefficient of hydrogen. 
κLaH2 is the Henry’s Law constant for H2. pgas, H2

 is the partial pressure for hydrogen in the gas.  
As discussed by Rosen and Jeppsson (2006), the ADM1 system can be ‘stiff’ because of the various time step 
variations of the different state variables reaction rates, which can vary from days for the biochemical processes 
to milliseconds for the pH. Implicit Matlab solvers can be adopted to stably solve stiff ODE systems without 
increasing the number of time steps to reduce the temporal discrepancies. However, the ability of these stiff 
solvers can be deteriorated when dealing with dynamic inputs (Rosen and Jeppson, 2006). Thus, a way to solve 
this problem, is to use the BSM2 suggestion to represent the two fast states, hydrogen ion (H+) and H2, by 
algebraic equations (DAEs) (i.e., Eqs(5) and (6)) and solve the DAE system by using explicit solvers, as 
considered in this study for the DAE ADM1 development. However, DAE ADM1 was coded by using Symbolic 
Math Toolbox and solved by ‘ode15i’ in Matlab – a variable step solver based on backward differentiation 
formulas (Shampine, 2002) and not in Simulink as for the BSM2 (Rosen and Jeppson, 2006).  

                           SH+ + Scat+ + SNH4
+ − SHCO3

- − 
Sac-

64 − 
Spro-

112 −
Sbu-

160  − 
Sva-

208  −  SOH- −  San- = 0                          (5) 

 

                                                                        
q*SH2,in

Vliq
−  

q*SH2,liq

Vliq
+ ∑ ρjνi,j

j=1-19

= 0                                                                          (6) 

Table 1: Dynamic state variables in the ADM1 model. 

Soluble  Particulate 
No. Namee Unit Description  No. Name   Unit Description 
1 Ssu kg COD/m3 monosaccharides  22 Xc kg COD/m3 particulate 

composites 2 Saa kg COD/m3 amino acid  23 Xch kg COD/m3 carbohydrates 
3 Sfa kg COD/m3 long chain fatty acid  24 Xpr kg COD/m3 proteins 
4 Sva kg COD/m3 total valerate  25 Xli kg COD/m3 lipids 
5 Sbu kg COD/m3 total butyrate  26 Xsu kg COD/m3 sugar degraders 
6 Spro kg COD/m3 total propionate  27 Xaa kg COD/m3 amino acid 

degraders 7 Sac kg COD/m3 total acetate  28 Xfa kg COD/m3 LCFA degraders 
8 SH2 kg COD/m3 hydrogen in liquid 

phrase 
 29 Xc4 kg COD/m3 valerate and 

butyrate degraders 9 SCH4 kg COD/m3 methane in liquid 
phrase 

 30 Xpro kg COD/m3 propionate 
degraders 10 SIC kg COD/m3 inorganic carbon  31 Xac kg COD/m3 acetate degraders 

11 SIN kmole N/m3 inorganic nitrogen  32 XH2 kg COD/m3 hydrogen degrader 
12 SI kg COD/m3 soluble inert  33 XI kg COD/m3 particulate inert 
13 Scat+  kmole/m3 cation      
14 San- kmole/m3 anion      
15 Sva- kg COD/m3 base form valerate      
16 Sbu- kg COD/m3 base form butyrate      
17 Spro- kg COD/m3 base form propionate   
18 Sac- kg COD/m3 base form acetate  Gas 
19 SHCO3

-  kmole C/m3 bicarbonate  34 Sgas,H2 kg COD/m3 hydrogen  
20 SNH3 kmole N/m3 ammonia in liquid 

phase 
 35 Sgas,CH4 kg COD/m3 methane 

21 SH+ kmole H+/m3 hydrogen ion  36 Sgas,CO2 kmole C/m3 carbon dioxide 

2.2 Initial values influence identification 

To verify the DAE ADM1 established in this study, the specific input data provided in BSM2 were considered 
(Table 2). Successively, the influence of initial values on stoichiometric and kinetic parameters calibration were 
investigated. Specifically, the initial values and model parameters calibrated by Nguyen (2014) to predict the 
AD performance of the model validation stage were used and results were compared with his study (Figure 1). 
Finally, this study also compared the model calibration stage results of Nguyen’s (2014) (Table 3). As the initial 
values of this stage were not reported by the author, steady-state outputs from BSM2 were considered as initial 
values, which assumed that sewage sludge was used as inoculum material for the digester, with relative stable 
characteristics. The model parameters were kept at the calibrated value reported by the author (Nguyen, 2014).  
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3. Results 

3.1 DAE ADM1 model verification  

Table 2 and 3 show DAE ADM1 results and comparisons with literature studies for calibration.  

Table 2: Steady-state simulation results of DAE ADM1 model against BSM2’s ODE ADM1 model. 

Soluble  Particulate 
No. Name BSM2 DAE ADM1 APE (%)  No. Name BSM2 DAE ADM1 APE (%) 
1 Ssu 0.0120 0.0120 0.00  22 Xc 0.3087 0.3087 0.01 

2 Saa 0.0053 0.0053 0.00  23 Xch 0.0279 0.0279 0.00 

3 Sfa 0.0986 0.0986 0.00  24 Xpr 0.1026 0.1026 0.00 

4 Sva 0.0116 0.0116 0.00  25 Xli 0.0295 0.0295 0.00 

5 Sbu 0.0133 0.0133 0.00  26 Xsu 0.4202 0.4202 0.00 

6 Spro 0.0158 0.0158 0.00  27 Xaa 1.1792 1.1792 0.00 
7 Sac 0.1976 0.1812 -8.30  28 Xfa 0.2430 0.2430 0.00 
8 SH2 0.0000 0.0000 0.00  29 Xc4 0.4319 0.4319 0.00 

9 SCH4 0.0551 0.0533 -3.18  30 Xpro 0.1373 0.1373 0.00 
10 SIC 0.1527 0.1538 0.71  31 Xac 0.7606 0.7612 0.08 

11 SIN 0.1302 0.1302 -0.00  32 XH2 0.3170 0.3170 0.00 
12 SI 0.3287 0.3287 0.01  33 XI 25.6174 25.6174 0.00 
13 Scat+  0.0400 0.0400 0.00       
14 San- 0.0200 0.0200 0.00       
15 Sva- 0.0116 0.0116 0.07       
16 Sbu- 0.0132 0.0132 -0.01       
17 Spro- 0.0157 0.0157 -0.02   
18 Sac- 0.1972 0.1809 -8.31  Gas 
19 SHCO3

-  0.1428 0.1432 0.33  34 Sgas,H2 0.0000 0.0000 -0.68 
20 SNH3 0.0041 0.0039 -5.45  35 Sgas,CH4 1.6256 1.5667 -3.62 

21 SH+ 0.0000 0.0000 5.94  36 Sgas,CO2 0.014 0.0150 6.27 

Table 3: Simulation results of DAE ADM1 model, compared with the model calibration stage in Nguyen’s (2014).  

Soluble  Particulate 
No. Name Nguyen DAE ADM1 APE(%) 

(%) 
 No. Name Nguyen DAE ADM1 APE(%) 

1 Ssu 0.0049 0.0253 416.04  22 Xc / 55.7374 / 

2 Saa 0.0022 0.0022 0.82  23 Xch 0.2290 55.7374 24239.50 

3 Sfa 0.0357 0.0356 0.19  24 Xpr 0.0132 1.3307 9981.05 

4 Sva 0.0018 0.0008 56.04  25 Xli 0.0018 0.1532 8411.12 

5 Sbu 0.0060 0.0024 60.66  26 Xsu 8.0364 1.1788 85.33 

6 Spro 0.0061 0.0061 0.74  27 Xaa 0.3662 0.3690 0.75 
7 Sac 0.0285 0.0569 99.64  28 Xfa 0.0343 0.0296 13.66 
8 SH2 0.0000 0.0000 99.00  29 Xc4 0.6878 1.4381 109.08 

9 SCH4 0.0477 0.0467 2.15  30 Xpro 0.8091 0.6501 19.65 
10 SIC 0.1950 0.0494 74.67  31 Xac 2.5956 0.625 75.93 

11 SIN 0.0800 0.0925 15.61  32 XH2 1.477 1.180 20.11 
12 SI 44.910 39.846 11.28  33 XI 17.575 16.479 6.24 
13 Scat+  0.0247 0.0250 1.22       
14 San- 0.0659 0.0781 18.50       
15 Sva- 0.0018 0.0008 56.34       
16 Sbu- 0.0060 0.0023 61.03       
17 Spro- 0.0061 0.0060 1.81   
18 Sac- 0.0285 0.0564 98.01  Gas 
19 SHCO3

-  0.4785 0.0384 91.97  34 Sgas,H2 0.0000 0.0000 7.29 
20 SNH3 0.0650 0.0008 98.76  35 Sgas,CH4 1.2507 1.3176 5.35 
21 SH+ 3.1623*10-8 1.4356*10-

7 
353.97  36 Sgas,CO2 0.0178 0.0163 8.52 
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Specifically, DAE ADM1 results were compared respectively with BSM2 (Rosen and Jeppsson, 2006) and 
Nguyen (2014) outcome and the absolute percentage errors (APEs) of the steady-state outputs were evaluated. 
In Table 2, the highest APEs (>1%) are related to the simulated concentrations of Sac, Sac-, SNH3  (SNH3 =  SIN −

 SNH4
+), SH+, SCH4, Sgas,CH4 and Sgas,CO2 . Except for SCH4, Sgas,CH4 and Sgas,CO2, they are all state variables in the 

algebraic equation for solving SH+ concentration Eq(5). Since the DAE system is only an approximation of ODE 
system, this could be the source of the discrepancies of the APEs, as by influencing the following biogas 
production process, it can thus cause errors in the calculation of the gas concentrations of Sgas,CH4 and Sgas,CO2. 
BSM2 study reported that the largest absolute error of steady-state simulation results between their DAE and 
ODE ADM1 models was only 10-5 (Rosen and Jeppsson, 2006). Another cause of DAE ADM1 errors could also 
be related to the implicit solver used in Matlab, which solves the non-linear equations by Newton’s method 
(MathWorks, 2022).  

3.2 Influence of initial values on DAE ADM1 model calibration 

Results obtained by comparing DAE ADM1 with results of the model validation stage in Nguyen’s (2014) are 
shown in Figure 1, respectively for pH (a), Total Ammonia Nitrogen (TAN) (b) and Acetic Acid (c). As shown, 
DAE ADM1 results, which are represented with a blue line, mostly match Nguyen (2014) simulation results, by 
considering the author’s initial values and model parameters. Therefore, the stoichiometric and kinetic 
parameters calibrated by Nguyen (2014) can be considered representative for predicting the AD performance 
of his specific steady feedstock.  
 

  

 

 
Figure 1. Comparison of the simulation results for pH, TAN and acetic acid of the model validation stage in 

Nguyen’s (2014) study between his model and DAE ADM1. 

As reported, the influence of the initial values on the calibration of model parameters was investigated by also 
reproducing the model calibration stage results in Nguyen’s (2014) (Table 3). This further comparison aimed at 
verifying whether the same steady state simulation results could be obtained by using the generic initial values 
from BSM2 and the set of calibrated model parameters used above, or this set of representative model 
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parameters cannot be derived when calibrating the ADM1 using generic initial values. The steady-state outputs 
of Nguyen (2014) and DAE ADM1 are shown in Table 3, where half of the state variables differ by more than 
50%, which prove the influence of generic initial values on the model performance. This could be attributed by 
Nguyen (2014) probably deriving the representative model parameters by iterative model calibrations and using 
long-term experimental data (which could make the influence of inaccurate initial values negligible, as previously 
explained in section 1), however this was not specified by the author. These results confirmed that if ADM1 is 
calibrated by using short-term experimental data as implemented in some studies (Baldé et al., 2020), it is crucial 
to provide a relatively accurate set of initial values, otherwise, the calibrated model is very unlikely to generate 
effective results for the model validation stage.  

4. Conclusions 

A DAE system ADM1 model was developed in this study, called DAE ADM1. Specifically, this model determined 
the concentrations of hydrogen ions (H+) and hydrogen (H2) from anaerobic digestion processes by solving the 
main related equations via a DAE system. DAE ADM1 was verified by comparing its steady state outputs with 
results obtained from BSM2 framework and by comparison with literature studies. This study analysed the 
influence of the initial values of AD state variables on the calibration of the model stoichiometric and kinetic 
parameters. Results confirmed that the accuracy of the AD process initial values can be critical for an accurate 
prediction of the system performance. This study also highlighted the need of future work to develop an 
approach for ADM1 initial values and parameters calibration, when experimental observations are limited, as 
this is very common in industrial AD operations.  
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