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Soft sensors for estimating a fraction of key components in the products of a Low-temperature isomerization 
process equipped with a deisohexanizer distillation column are developed. Real plant data from the refinery 
distributed control system (DCS) are used. A considerable attention is paid to data selection, selection of key 
input variables, data processing and analysis. 
Dynamic soft sensor models for estimating the fraction of 2,2-Dimethylbutane, 2,3-Dimethylbutane, 2-
Methylpentane and 3-Methylpentane in the products of the process are developed based on linear and 
nonlinear regression techniques. The development of a linear dynamic Finite Impulse Response (FIR), 
Autoregressive with Exogenous Inputs (ARX), Output Error (OE), as well as Nonlinear Dynamic 
Autoregressive with Exogenous Inputs (NARX) and Hammerstein-Wiener (HW) models are presented. 
Developed models were evaluated by validation techniques including Root Mean Square Error (RMSE), 
Absolute Error (AE), Final Prediction Error (FPE) and FIT coefficients. 
The results show that the developed soft sensors can reliably estimate the content of key components and 
thus replace process analysers in the case of failure. This will contribute to the operation stability of the 
column, the rise in product quality, the reduction in energy consumption as well as the improvement of whole 
isomerization process. Also, the developed soft sensors can be applied in the Advanced Process Control 
scheme of the deisohexanizer column. 

1. Introduction 
Legislation requirements for the limitation on pollutants emission into the environment demand strict following 
to prescribed concentration of pollutants emission from plants, vehicles and other devices. There are also 
requirements for continuous improvement in product quality and minimizing energy consumption. Continuous 
measurement of the key process variables is necessary for both requirements. However, process analysers 
are usually very expensive; they can suffer from a large analysis time and they are subject to failures. 
As an alternative for continuous process analysis soft sensors were proposed. Many methods have been 
developed for estimation and prediction of key process variables by using other easily measured process 
variables (Kadlec et al., 2009). They are applied for process monitoring and can be a part of advanced 
process control strategy where they are used for estimating the key variable behaviour. 
Various model structures can be developed for real process modelling. In complex industrial processes, the 
development of first principles models can be very demanding, time-consuming and with a large number of 
uncertain parameters. Data-driven models with parametric polynomial structures like linear autoregressive 
models with external inputs and their nonlinear versions are more convenient, but model order and time 
delays have to be predefined (Ujević Andrijić et al., 2017).    
Typical soft sensor design procedure includes the following steps: selection of historical data from plant 
database, outlier detection and data filtering, model structure and regressor selection, model estimation and 
validation (Fortuna et al., 2007). Choosing the optimal model structure is often crucial for soft sensor 
performance (Kadlec et al., 2009). 
Many papers in recent years were covered various design techniques and application of soft sensors in the 
process industry. However, there is a lack of research on the application of soft sensors in the isomerization 



process. Xianghua et al. (2009) proposed an inferential model for online estimation of the para-xylene 
concentration at the reactor outlet stream in the industrial isomerization unit. Very often soft sensor design is 
based on neural networks, support vector machine and principal component analysis (PCA). Mei et al. (2017) 
used Gaussian process regression and PCA to overcome process non-linearity, shifting operating modes, 
dynamics and uncertainty in the development of a multi-model strategy based soft sensor in fermentation 
processes. Cao and Luo (2014) proposed a soft sensor model derived from Wiener model structure to 
effectively describe dynamic and static characteristics of a system. The study presented by Mollaiy-Berneti 
(2014) describes the development of a committee machine based soft sensor. The proposed inferential sensor 
combines the results of linear and nonlinear auto-regression exogenous input, neural network and adaptive 
neuro-fuzzy inference system (ANFIS) for overall oil flow rate prediction. The work presented by Shakil et al. 
(2009) demonstrates the application of dynamic neural networks for developing soft sensors used for the NOx 
and O2 emission prediction due to combustion operation in industrial boilers. Chen et al. (2009) used FIR 
model to develop a dynamic soft-sensor based on OE method for prediction of the immeasurable outputs of 
product quality variables in dual-rate sampling systems.  
In this work, several types of dynamic linear and nonlinear parametric polynomial models are developed, 
including FIR, ARX, OE, NARX and HW models which predict the key components content of the sidecut and 
overhead products at the deisohexanizer distillation column. 

2. Soft sensor model structures 
In the book by Ljung (1999) system identification methods are briefly explained. The simplest dynamical 
process model is the FIR, which represents the linear regression over the past measuring input samples. The 
model predictor is presented by the following equation: 
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past process input samples and nk is input time delay expressed by the number of samples.  
One of the frequently used linear dynamic process model which takes into account a noise occurrence is the 
ARX. The model predictor is: 

ˆ( ) = [1- ( )] ( ) + ( ) ( - )y t q y t q u t nkA B  (2) 

where 
-1 -2 -

1 2
( ) = 1+ + + ... + na

na
q q q qA A A A  is polynomial matrix by q-1 of dimensions n(y)×n(y). na is the 

number of past process output samples. 
One of the commonly used linear models for the online estimation is the OE model: 
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number of past model predicted output samples. 
A linear dynamic model can be sufficient for the applications in many cases, but most of industrial processes 
show nonlinear dynamic behaviour. The structure of linear models is fully defined by the selected regressors, 
while the nonlinear model structure additionally depends on attributes of a nonlinear function. Such a 
nonlinear function can be presented by various types of networks such as wavelet, sigmoid, piecewise-linear 
and other.  
NARX is a nonlinear version of ARX model. The predictor has a linear regression form with the addition of a 
nonlinear part: 
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where fn is a nonlinear function containing a number of nonlinear units. When the system dynamics can be 
well described by a linear model but if there is a presence of a static nonlinearity at inputs and outputs the HW 
model can be applied. HW model has a block structure described by 3 functions:  

• ( ) = ( ( ))w t f u t  is a nonlinear function transforming input data u(t) 

• ( ) = ( / ) ( )x t w tB F  is a linear transfer function where B and F are polynomials of the OE model 

•  ˆ( ) = ( ( ))y t h x t is a nonlinear function mapping output data x(t) from the linear block to the model output 

The nonlinear functions of the HW model are described in the same as at a NARX model. 



3. Process description 
Refinery process of catalytic isomerization of pentane, hexane and their mixtures improves the octane of light 
straight-run naphtha. The reactions take place in the presence of hydrogen over a fixed bed of catalyst and at 
operating conditions that promote isomerization and minimize hydrocracking (Meyers, 2003). 
The dominant reaction of the isomerization process is the conversion of n-paraffins to i-paraffins, i.e., to high-
octane structure (Cerić, 2012). The reaction is controlled by thermodynamic equilibrium that is more favorable 
at a low temperature. The isomerized product is stabilized in the stabilizer distillation column where it is 
separated as a liquid product at the bottom and fuel gas at the top of the column. The basic isomerization 
process is improved by adding a deisohexanizer column where the stabilizer bottoms are separated into 
normal and isoparaffin components. In the deisohexanizer column sidecut stream, the non-converted n-
paraffins and the new-formed low-octane methylpentanes are concentrated and returned to the reactor section 
as shown in Figure 1 (Meyers, 2003). 
 

 

Figure 1: Isomerization process and deisohexanizer column (Meyers, 2003) 

 

Figure 2: Deisohexanizer column and influential variables 

The key components of the isomerization process products are the high-octane 2,2-DMB, 2,3-DMB and the 
low-octane 2-MP, 3-MP. Their content is measured by on-line chromatographic analyzers where high-octane 
sample is taken from the deisohexanizer side-cut stream and low-octane sample is taken from the 
deisohexanizer overhead stream as shown in Figure 2. The fraction of the components is also determined by 
laboratory analyses. The goal is to maintain high-octane 2,2-DMB and 2,3-DMB in the overhead stream and to 
maintain low-octane 2-MP and 3-MP in the sidecut stream by controlling the fraction of these key components. 
Usually, the challenge is long process analyzing time that contributes to overall process control dead time and 
unstable column operation. Analyzers are also frequently under maintenance. For that reason, soft sensors 
are developed for continuous estimating the fraction of the key components to enable inferential control. 



Based on process expert experience the following variables are chosen as the influential variables on the key 
components content: TI-046, V17 column overhead stream temperature; TIC-047, V17 column 21st tray 
temperature; TI-045, V17 column sidecut stream temperature; TI-049, V17 column bottom stream 
temperature; FI-028, V17 column reflux flow; FIC-029, V17 column reflux flow and isomerate outlet flow sum; 
FIC-020, V17 column sidecut stream flow and FIC-026, V17 column bottom stream flow, see Figure 2.  

4. Model development 
Data from the refinery DCS were collected over period of 2–3 weeks and checked with laboratory assays. 
According to the process dynamics, the sampling interval was chosen to be 3 minutes. Data preprocessing 
included detection of outliers and missing data and detrending. The coefficients of the ARX and FIR models 
were optimized by least-squares method, for the OE models that was numerical search method, and for the 
NARX and HW models a combination of Gauss-Newton, Levenberg-Marquardt and Trust-region methods 
were used. The models were developed using the MATLAB System Identification Toolbox. The models were 
evaluated by statistical criteria based on root mean square error (RMSE), absolute error (AE), final prediction 
error (FPE) and FIT coefficients (MathWorks, 2014), Eq(5)–(6): 
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where y is the measured output, ŷ is the model output, ȳ is the mean of y, V is the loss function, d is the 
number of estimated parameters and n is the number of values in the estimation data set.  

5. Results and discussion  
All models were additionally evaluated on the validation data set. In the tables 1 and 2 the results of the linear 
(FIR, ARX, OE) and nonlinear (NARX, HW) models for estimating the content of 2,3-DMB in the 
deisohexanizer column sidecut stream and 2-MP content in the deisohexanizer overhead stream are shown, 
respectively.  

Table 1: 2,3-DMB model evaluation 

  FIR ARX OE NARX HW 
FIT 65.84 73.15 72.62 72.99 73.76 
FPE 0.0524 1.17×10-7 0.0345 1.44×10-7 0.1017 
RMSE (% mole) 0.266 0.209 0.213 0.206 0.200 
AE (% mole) 0.213 0.163 0.156 0.163 0.149 

Table 2: 2-MP model evaluation 

  FIR ARX OE NARX HW 
FIT 62.0 82.89 88.02 83.5 88.91 
FPE 1.181 5.9×10-8 0.0856 6.39×10-8 0.1822 
RMSE (% mole) 0.856 0.386 0.270 0.386 0.260 
AE (% mole) 0.681 0.320 0.201 0.326 0.196 

 

         
(a) (b) 

Figure 3: Comparison between measured data and FIR model. (a) 2,3-DMB content. (b) 2-MP content 



            
(a) (b) 

Figure 4: Comparison between measured data and ARX model. (a) 2,3-DMB content. (b) 2-MP content 

                 
(a) (b) 

Figure 5: Comparison between measured data and OE model. (a) 2,3-DMB content. (b) 2-MP content 

             
(a) (b) 

Figure 6: Comparison between measured data and NARX model. (a) 2,3-DMB content. (b) 2-MP content 

        
(a) (b) 

Figure 7: Comparison between measured data and HW model. (a) 2,3-DMB content. (b) 2-MP content 

Figures 3, 4, 5, 6 and 7 show the comparison between measured data and model output for the estimation of 
the content of 2,3-DMB and 2-MP, respectively. The comparison is shown for validation data set. 



Comparing the evaluation results for 2,3-DMB and 2-MP content in linear and nonlinear models, it can be 
seen that the later give better results for the ARX, OE, NARX and HW models, while the FIR models give 
roughly the same performance examining the FIT values.  
For both 2,3-DMB and 2-MP content, FIR models give the weakest performance comparing to other models. 
The reason is their simple parametric structure that takes into account only past measured input values for 
model output calculations. For the 2-MP content, the OE shows better matching in the comparison with ARX. 
Comparing with nonlinear models, based on overall FIT, FPE, RMSE and AE, the best results are obtained 
with the HW model. 2,3-DMB content ARX, OE, NARX and HW model gives roughly the same performance 
although it was expected that nonlinear modeling will result with certain improvements. Figures 3–7 show a 
good matching between measured data and model output for both 2,3-DMB and 2-MP content. Also, the 
overall absolute errors of around 0,2 % mole is satisfying for planned online implementation.  
The results for 2,2-DMB and 3-MP content model have been omitted due to limited space, but similar 
conclusions can be drawn as well as for above-analysed cases. 

6. Conclusions 
Linear and nonlinear dynamic models for estimating the content of 2,2-DMB, 2,3-DMB, 2-MP and 3-MP as key 
components in the products of a low-temperature isomerization process equipped with a deisohexanizer 
distillation column were developed. The results show that the process dynamics can be reliably described. 
The results obtained by both 2,3-DMB and 2-MP content models are acceptable for the soft sensor application 
in the plant. Due to the tendency that optimal model for implementation in the real plant is the simplest model 
with a good FIT and a small prediction error the OE models is best selection for on-line analyser temporary 
replacement, while the ARX models can be applied in the advanced process control scheme.  
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