Ru- and Rh- based Catalysts for CO_{2} Methanation Assisted by Non-Thermal Plasma

E. Meloni ${ }^{\text {a }}$, L. Cafiero ${ }^{\text {a }}$, S. Renda ${ }^{\text {a }}$, M. Martino ${ }^{\text {a }}$, M. Pierro ${ }^{\text {a }}$, V. Palma $^{\text {a }}$
${ }^{\text {a }}$ University of Salerno, Fisciano, Italy. emeloni@unisa.it

Key words: non-thermal plasma; methanation; sustainability; electrification
The need to reduce the concentration of CO_{2} in the atmosphere is becoming increasingly necessary since it is considered the main factor responsible for climate change. Carbon Capture and Utilization (CCU) technology offers the opportunity to obtain a wide range of chemicals using this molecule as a raw material. In this work, the catalytic NonThermal Plasma (NTP)-assisted hydrogenation of CO_{2} to CH_{4} (methanation reaction) in a Dielectric Barrier Discharge (DBD) reactor was investigated. Four different Ru- and Rhbased catalysts were prepared starting from $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ spheres, characterized and tested in both thermal and NTP-assisted methanation under different operating conditions. The experimental tests evidenced the very positive effect of the NTP application on the catalytic performance, highlighting that for all the catalysts the same CO_{2} conversion was reached at a temperature $150^{\circ} \mathrm{C}$ lower with respect to the conventional thermal reaction. Among the prepared catalysts, the bimetallic ones showed the best performance, reaching a CO_{2} conversion of 97% at about $180{ }^{\circ} \mathrm{C}$ with a lower energy consumption with respect to similar catalysts present in the literature.

Figure 1. RuRh-yAl ${ }_{2} \mathrm{O}_{3} \mathrm{CH}_{4}$ yield comparison for both thermal and non-thermal-plasma-assisted tests at $W H S V=1 \mathrm{NL} / g_{c a t} h$.

The ability to activate the CO_{2} molecules at lower temperatures results in the possibility of reaching yields that would be impossible to reach due to thermodynamic limitations. Furthermore, it is also fundamental to note that it is possible to obtain CH_{4} yields similar to the thermal ones at temperatures about $100{ }^{\circ} \mathrm{C}$ lower, which would result in a considerably lower energy expense.

