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Abstract
In this paper, we introduce a novel hierarchical reinforcement learning algorithm for plant-wide control, combining a high-level artificial neural network with low-level PID controllers. We evaluate the algorithm's performance using a computational case study focused on setpoint tracking, noise control, and disturbance rejection. Comparative analysis with derivative-free optimization, multiloop relay tuning, and a nonlinear model predictive controller demonstrates that the hierarchical reinforcement learning algorithm consistently outperforms traditional PID tuning methods in terms of integral square error. However, the NMPC excels in scenarios where manipulating other system units enhances setpoint tracking beyond PID capabilities. We also assess the controllers' robustness through a parametric mismatch analysis, simulating reactor cooling jacket fouling and reactor catalyst degradation. This analysis highlights that the hierarchical reinforcement learning algorithm's lesser dependence from an accurate model gives it an advantage over NMPC when a plant-model mismatch exists.
Introduction
Industrial chemical processes are vital for the modern economy thus their efficient and safe operation is paramount. Plant-wide control, which considers multiple interconnected units, can enhance overall performance but presents challenges due to interactions and non-linearities (Rangaiah & Kariwala, 2012). Advanced control methods such as model predictive control can be effective but often face issues with model identification and uncertain plant conditions (Qin & Badgwell, 1997). In contrast, Proportional-Integral-Derivative (PID) controllers are widely used in the chemical industry for their simplicity, yet they require intricate tuning for system dynamics. Traditional methods such as the detuning method (Luyben, 1986) are developed to find a stable set of PID gains for a particular system's dynamics and may not find the optimal set with respect to setpoint tracking. To address this, we introduce a hierarchical reinforcement learning algorithm for plant-wide control, combining a high-level artificial neural network controller with lower-level PID controllers. This hierarchical approach reduces the policy space, enhancing the convergence rate compared to directly implementing a neural network controller (Hengst, 2010). Previous research has explored reinforcement learning for PID tuning, with applications in simulated and real-world systems (Dogru et al., 2022).
In this paper, our objective is to develop a hierarchical reinforcement learning algorithm for plant-wide control, aiming to enhance system performance and robustness. We assess the algorithm's effectiveness through a computational case study 
(Reactor-Separator-Recycle), comparing its performance to other PID tuning methods and nonlinear model predictive control. Robustness is evaluated through a parametric mismatch analysis simulating plant-model mismatch.
Background
PID Controllers
The discretized PID controller used in this paper can be written as Eq. (1):
	 with 
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Where is the manipulated variable, is the proportional constant, is the integral constant, is the derivative constant, and represents the error between the setpoint and the state  To assess the performance of the PID controller, the discretized integral square error (ISE) metric is used throughout this paper:
	    
	(2)


Reinforcement Learning
Reinforcement learning involves an agent interacting with an environment to maximize cumulative rewards (Sutton & Barto, 2018). The goal is to learn an optimal policy, mapping states to actions in a Markov decision process (MDP). The state, denoted as , and control action, , exist in state space  and control action space , respectively. The agent receives a reward  when transitioning from  to .  represents the probability of transitioning from  to  given the action , which is approximated by a simulator.
	Policy gradient algorithms such as REINFORCE (Williams, 1992) directly optimize the policy by computing gradients to maximize expected rewards. Value function-based methods, such as Q-learning (Watkins, 1989), estimate the value of each state-action pair to improve decision-making by updating value estimates towards better predictions. These policy and value functions are then represented by deep neural networks which gives rise to the name deep reinforcement learning.
Computing policy gradients or value functions can be computationally intensive as they require approximation. However, evolutionary strategies, like particle swarm optimization (PSO) (Eberhart & Kennedy, 1995), have shown computational efficiency without the need for gradients or value functions, albeit with a higher data requirement (Salimans et al., 2017). This paper utilizes PSO for policy optimization.
Methods
Problem Statement
The system dynamics can be approximated as a discrete stochastic nonlinear system:
	 
	(3)


Where are the states of the system,  are the control actions,
 represents the disturbance to the system, and  represents the nonlinear dynamics of the system. The hierarchical reinforcement learning method searches for an optimal policy to minimize the setpoint error with a control input penalty in a stochastic environment and under disturbances. The following Optimal Control Problem (OCP) represents this:
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Where is a vector of the state setpoints and is a vector of the control's lower bounds. The first term of the reward function rewards the setpoint tracking of the policy and the two subsequent terms motivate smooth control inputs. The problem can now be represented in a closed-loop form as shown in Figure 1.
Hierarchical Reinforcement Learning
[image: ]The agent in Figure 1 consists of two layers of policies arranged in a hierarchy. The top of the hierarchical structure is a policy formed by an Artificial Neural Network (ANN) that is parameterized This takes the current state , previous state  and the current setpoint  Then outputs the parameters ) of the lower level of the hierarchy which is the PID policy. The PID policy takes these parameters along with the setpoint error and outputs the control action . The structure of the hierarchical reinforcement learning algorithm is represented in Figure 1.[bookmark: _Ref149903706]Figure 1. Closed-Loop Structure



Policy Optimization
To find the set of parameters  which solves the OCP (4) a combination of a direct stochastic search and the evolutionary method PSO is used. The generic PSO algorithm is parameterized as follows: inertial weightwhich is set to 0.5, and the acceleration coefficients  and  which are set to 2.3 and 1.8, as suggested by Eberhart & Kennedy. 
Training and Testing Methodology
[image: ]The algorithm is trained on four different setpoint changes which vary in both magnitude and direction of the step and a disturbance to the feed temperature. The rewards from all setpoint changes and disturbance simulations are summed and used to evaluate a policy. After the reinforcement learning algorithm has been trained, it is tested on an unseen episode with two setpoint changes and the inclusion of a disturbance at the start of the simulation. 
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Computational Case Study
Simulation and Comparison
The algorithm is tested on a reactor-separator-recycle (RSR) case study (Figure 2). The hierarchical reinforcement learning policy is trained through 10 epochs using direct stochastic search and over 20 PSO iterations (Figure 3). The ANN control policy comprises an input layer, two fully connected layers, and an output layer. In the first layer, the reactor PID parameters use 20 neurons, and in the second, 5 neurons, while the distillation column employs 20 neurons in both layers. Sigmoid activation functions are applied between layers, with the ReLU activation function used for the output layer. Figure 4 presents simulation, control, and PID parameter trajectories, and Table 3 displays the corresponding ISEs. PID parameters obtained from relay multiloop tuning and DFO methods remain constant over time and are detailed in Table 2.
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	Kp
	Ki
	Kd
	Kp
	Ki
	Kd
	Kp
	Ki
	Kd

	Relay
	17.16
	5.13
	5.97
	0.23
	0.06
	0.08
	261.50
	32.95
	222.90

	DFO
	5.73
	5.75
	9.27
	0.32
	0.38
	0.21
	175.10
	556.80
	458.40


[image: ]   	The multiloop relay and hierarchical reinforcement learning tuning methods follow a similar trajectory (Figure 4). The DFO method has significant oscillations when reaching the setpoint from the initial state, this is due to the high integral PID gain compared to the other PID tuning methods (Table 1). The hierarchical reinforcement learning algorithm reduces the proportional PID gain when the setpoint is increased to 0.98 mol/mol and decreased to 0.94 mol/mol. This reduces overshoot compared to the relay tuning method, resulting in a marginally lower ISE. The NMPC manipulates the jacket temperature as well as the reflux ratio to change the distillate composition. [bookmark: _Ref151118493]Table 1. Static PID Gains
Figure 3. Learning Curve
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	HRL
	DFO
	NMPC
	Relay

	ISE (𝑥B,D) [mol/mol]
	0.033
	0.044
	0.017
	0.035


[image: A screenshot of a graph

Description automatically generated]Parametric Mismatch [bookmark: _Ref149904859]Figure 4. Reactor-Separator-Recycle Simulation

[image: A graph of a graph of a graph

Description automatically generated with medium confidence]The catalyst activity varies within the range of 0.1-7.2 × 1010 s-1, while the cooling jacket heat transfer coefficient spans from 0.1-7 × 105 W/K. Figure 5 illustrates the resulting ISE across these parameter variations. In the case of catalyst degradation PID-based control methods maintain a stable ISE across the parameter range until significant degradation occurs (Figure 5). In contrast, NMPC's ISE increases with catalyst degradation, indicating worsened setpoint tracking due to plant-model mismatch and the NMPC's reliance on jacket temperature for distillate composition control. During reactor jacket fouling all control methods, except DFO tuning, remain stable until significant fouling occurs. The DFO tuning method exhibits significant variance across parameters, primarily due to ineffective noise rejection caused by the large integral gain of the chosen PID gains (Figure 5).













Figure 5. Parametric Mismatch



Conclusions and Future Work
This paper introduces a hierarchical reinforcement learning approach for PID controller tuning in plant-wide control. The method employs the PSO algorithm to optimize a hierarchical system comprising a high-level ANN and low-level PID controllers. In our computational case study, we compared the performance of the reinforcement learning algorithm with NMPC, DFO, and multiloop relay tuning. While the reinforcement learning algorithm outperformed traditional PID tuning methods, NMPC demonstrated superior performance by effectively manipulating multiple units to reach desired setpoints, resulting in significantly lower ISE across all case studies. We also conducted a parametric mismatch analysis, revealing that PID-based methods are more robust than NMPC when dealing with catalyst degradation due to NMPC's reliance on an accurate plant model. In future research, we aim to explore advanced strategies, such as allowing the high-level ANN policy to determine the PID controller setpoints or potentially replacing the PID policy with another reinforcement learning agent. 
References
Dogru, O., Velswamy, K., Ibrahim, F., Wu, Y., Sundaramoorthy, A. S., Huang, B., Xu, S., Nixon, M., & Bell, N. (2022). Reinforcement learning approach to autonomous PID tuning. Computers & Chemical Engineering, 161, 107760. https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.107760

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39–43. https://doi.org/10.1109/MHS.1995.494215

Hengst, B. (2010). Hierarchical Reinforcement Learning. In G. I. Sammut Claude and Webb (Ed.), Encyclopedia of Machine Learning (pp. 495–502). Springer US. https://doi.org/10.1007/978-0-387-30164-8_363

Luyben, W. L. (1986). Simple method for tuning SISO controllers in multivariable systems. Industrial & Engineering Chemistry Process Design and Development, 25, 654–660. https://api.semanticscholar.org/CorpusID:97803930

Qin, S. J., & Badgwell, T. A. (1997). An overview of industrial model predictive control technology. AIche Symposium Series, 93(316), 232–256.

Rangaiah, G. P., & Kariwala, V. (2012). Plantwide control: Recent developments and applications.

Salimans, T., Ho, J., Chen, X., & Sutskever, I. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning. ArXiv, abs/1703.03864. https://api.semanticscholar.org/CorpusID:11410889

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Watkins, J. (1989). Learning from Delayed Rewards.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning (Vol. 8).
 
image3.emf
 

CI CC

A ĺ�B

TI

TC2

ܨ

in

, C

A,pf

F

CWin

F

CWout

q

df

, C

A

, C

B

B, 

ݔ

B,A

 , 

ݔ

B,B

D, 

ݔ

D,A

, 

ݔ

D,B

F

R

, C

A,R

, C

B,R

ܨ

rf

, C

A,in

CI

TC1


image4.png
104_

Reward

103_

—— Smoothed Reward

True Reward

~— ~——

100

200

300
Iterations

400 500 600





image5.svg
                                                                                                                                                                                                                                                                                       


image6.png
RL-PID ---- DFO-PID —-—- Relay-PID —-—- NMPC - Setpoint
RL-PID Variance -... DFO-PID Variance I Relay-PID Variance -~ NMPC Variance

-_— - = = =

S
©
co

S
©
o

)

rp p [mol/mol]

O
O
D~

I I u -—.—.—._--—-—.—.—-_——
-- —I—I—l—l—__-—_——_l—l_-l_l-_l—l—l_l—l—l—l—l— S E DR N N N N N N S E— -
1 1 1 1
J (
. 4 PN o O O /O
, 0O /SO O _/OO0ONW0,\ 60060Y OO0 00 J O O\ \ 0
,Ooot\o' no. 400 0 0 0 0,0 0000 ¢g0O00O0O0O0 OO~ 4O0C0 _ T Jd 0o
4 ‘V."H...,QV‘Q.\.‘R."‘ O0OO0OVMOOODO JSO0~_ 000000 /O os00O0O0O\_
' \ PN x N €
r.4 ":["-\r""l.‘,o-\ @V',s\ o,a. §aO 0 O O g0 o“gmg)nrv"g@‘ o 00O\
N /A.‘,,r‘ "w./. e, T oooooo\ 4
________ e ‘V ‘ Av“v V\v’v $
I ey = " - -ﬁ’ \v‘.( ? OA \4(/\0 O O O O
I Y/ ’ ' - y OGS A 3. t”'x O QgD O\ /\
= — v,
: o 75 n-“']ufl'o‘aho‘fo AP0 PO 0 ¥ 00T P o0 E0 oM vvooo
I O 4 — OO0 0O PO VT'OM 0000000000000 00 0 0 XN 20 R ° O\
9 :)D - S0 0000 000D00D0D0D0D0O0DO0DODO0DODODODODODODODODOO : A o,//ou
,OO O 00 0O O A O " Q00 N0O0OOOO0O0ODO0O0O0O0OO0OOO O/ : (o‘;,o._o;\ P
/ O 4 O D O0OO0O0 /00O Jolb QY ©VO0O009 QO/NOAR(J 0 | O O
i~y ll A OOUOO| O O 0OC(¢  f A I N O C cQ
él \ -I*'\/‘// / & ”‘ e o< Q Q : \ #
A —
"\ O I ‘ Q O OO o(f‘ O\ Pl
\ ey / I TN \
b'/ “. T ‘LAL O | N\ \OP‘\OOQO
, u‘rb\‘Osu"‘».\ o-o’“».\’.‘ﬂ‘o” o / | X N Y/\O 00 0® & "B N
NS °
\QQQBQQQQQ oooooo 5 00000O0O0 O/ : N\ v, ‘amt-.lnr
———————————————————— ———.— --‘-‘ 5 4 P
NOQ 00 0 C© O O O O OO0 00OOO0( SORE® "~"'~“!',\__-_ -'~-$-\--\--
oooooooc
7 O \\o/c')\

Y O y O
G

— K -~ K, Variance -=—= K, “°% K, Variance —_= K, . K, Variance

700 -
600 -

000 -
400-

p-loop

X

200 -
100-
O_

0 5 10 15 20 25

Time [min]




image7.png
NMPC
~ 1 NMPC Variance

Il Relay-PID Variance

——- Relay-PID

DFO-PID Variance

DFO-PID

0 0 O

RL-PID Variance

RL-PID

50 ° o o5° o
o o o d®&. o
o} o} O | O
Q.0 0 0 O
O 0 _0 _ 0 ~o_
O O o0 o
O O o o o
O O o0 o
~_ 0 _0_o0
g _ O
o o
\ 5°5°%9,°
0 0o o _ o
O O o0 o
O O o o o
O O o0 o
O O o0 o
O O O
O O o0 o
O O O 0 g
© o o o o
O o o o  §
O O o0 o0
O O O
O O O
O O O
O O o0 o
0 0 O .o
0 _ 0 O
I
) o () o ()}
5.0 O . O
O O 0 0 . 0C
O O o0 o
0 O O .o
o 0 . 0O
T
° od\:o\\a o ©
N 0 U=
0D _ ©
o)
o
— _ﬂU -) -) -)
! m— ™ o
X X X
@) ) @\
S T~T “.‘«‘(“
P00 0070202020200 %%
RS Se 0 0200000
B Renee.
«QM‘MONOOOOOOOOO 00000 00”00’0)0»’

X O 9, (X

R ORIRSISE K

%, KX OKORA,

N 9. 9.9.8.9.90.90.90.0.0.0.0.9
0000000000060000000000000
O&OOOOOOQOOOOOOOOOW)O\

RARRRKE
KKK
\00000 X
LN
et

-
|“\|\‘\“
———

L —
llll

</

102-

101
10°-

HS1

600

400
UA [KW/K]

200

4
ko X 1010[1/8]





image1.png
RL Agent

State (x/)

Reward (R)) .

ANN PID
Policy Policy
—)
[Kp.t, Kit, Ka.]
Action
(ur)

X7 | Process Environment [¢

Disturbance (d¢)





image2.svg
                                R t+1   𝑥 t+1   Reward ( R t )   State ( 𝑥 t )   Action  ( u t )                                          Process Environment     Disturbance   (d t )       [ K p,t ,   K i,t ,   K d,t ]     ANN  Policy   PID  Policy   RL Agent


