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[bookmark: _Hlk495475023]This article presents the sophisticated-to-date carbon mass balance for fed-batch E.coli bioprocesses. The model originates from the distribution of carbon mass from glucose in biomass, off-gas, and hypothetical solutes. The suggested model complements Pirt's equation as a particular case scenario. The approach uses the linear relationship between biomass carbon content per carbon grams in glucose and average cell population age. The carbon balance brings two potential practical benefits. First, it has the potential to assess the type of cell metabolism pathway and to have a soft sensor for the concentration of dissolved products such as acetates. The measure of glucose concentration suggests another finding, assuring the reliance on off-gas information only. The paper introduces an average carbon content ratio in biomass and off-gas, with numerical values of 0.5 in growth-limiting experiments and 0.27 in nonlimiting ones, which may serve as a decision-making criterion for metabolic pathway detection in the future.
Introduction
Modeling glucose concentration in nonstationary fed-batch processes remains desired in research and development institutions and industrial installations. Therefore, corresponding dedicated online control techniques are unavailable. Currently, the regulators are present for bioreactor-related fed-batch setpoints (Levisauskas et al., 2019) and growth-limiting substrate feed for fed-batch (Galvanauskas et al., 2021) cultivations. Up until now, the state variables’ estimation is accessible through off-gas-based analytics routines providing soft sensors for microbial biomass (Urniezius and Survyla, 2019), targeting non-soluble recombinant product (Urniezius et al., 2021), and the specific biomass growth rate (Survyla et al., 2021). All mentioned methods are noninvasive and rely on exhaust gas mixture information.
Moreover, they share a common benefit: such approaches do not suffer issues when the nutrition medium is nonhomogeneous, making them acceptable for industrial scale-up efforts. The reason is that the exhaust gas presents cumulative knowledge with the trade-off of unavoidable estimation delay due to the bioreactor outlet channel length and broth‘s changing volume. Therefore, the analytical optimization and resolution of crucial state parameters in fed-batch recombinant bioprocesses are still challenging, involving multiple dilutions and time constants due to asynchronous observations from different external sensors.
So far, the specific glucose consumption rate behavior was modeled offline in both growth-limiting and repeated batch microbial cultivations (Survyla et al., 2022). Glucose concentration modeling efforts returned accumulated errors due to minor deviations in the substrate concentration and flow rate (Schubert et al., 1997). Building the parametric relationship with physiological meaning is ongoing. Therefore, we share an approach for glucose concentration modeling in fed-batch aerobic bacterial cultivations. The aim is to resolve the challenges of synchronizing different state variables: glucose concentration, the carbon content in biomass, and bacteria population age linked to the off-gas biosynthesis information.
Metabolic Pathways
The oxidative metabolism path is the desired metabolic pathway in aerobic fed-batch cultivations of recombinant E. coli. The general equation for aerobic respiration (Patel et al., 2022)
	
	(1)


From a fed-batch process perspective, the latter equation expands by introducing the additional chemical compounds involved:
	
	(2)


where oxygen and carbon dioxide coefficients  and  relate to the respiratory quotient RQ.  Correspondingly, the equation for the overflow metabolism (Deng et al., 2021): 
	
	(3)


In most cases, the respiratory quotient helps to determine the current cell metabolic pathway (Heyman et al., 2020). This paper proposes that the respiratory quotient numeric value is close to one for all metabolic pathways in E.coli fed-batch bioprocesses
	
	(4)


Experimental proof confirms this proposition when measuring the off-gas carbon production rate 𝐶𝑃𝑅 and oxygen uptake rate 𝑂𝑈𝑅 no matter the chosen overflow mode, i.e., glucose feed can be limiting or non-limiting the biomass growth.
Carbon Mass Balance
Looking at Eq(2) through the perspective of the carbon element, the total carbon balance emerges
	
	(5)


where total carbon  in fed glucose and nutrient medium is equal to the sum of total carbon  in each of the products m, produced from the aerobic process
	
	(6)


The sum of total carbon  involves the carbon content in biomass , soluble byproducts  (e.g., acetates) and produced off-gas . Given this, Eq(2) turns into the mass balance equation for carbon
	
	(7)


where the first term  represents the total mass of carbon in glucose,  and  coefficients are the carbon content in moles per gram of glucose  and total biomass , respectively (Xu et al., 1999). The constant  relates to the weight ratio of carbon and oxygen in carbon dioxide.
Data analysis showed that the coefficient () is not a process constant. It instead represents a linear relationship with the average age of the cell population , which is a function of biomass concentration X (Urniezius et al., 2021)
	
	
	(8)


The variable  consists of carbon masses in feeding glucose  , initial glucose  and glucose concentration  as follows
	
	(9)


It leads to an equivalent form of Eq(7), solved for boundary conditions
	
	(10)


In Eq(10), the variable  is the total fed glucose, and  stands for the total volume of the cultivation medium. The initial values of the state variables after inoculation into the bioreactor are as follows
	
	(11)


The coefficient  is the concentration of glucose in the feed, while the coefficient () is the glucose density which ensures the balance is in grams.
Expressing biomass growth  and dividing Eq(10) by total biomass  and  produces specific rate terms concerning total biomass and time
	

	(12)


where the biomass growth term becomes the average specific growth rate 
	
	(13)


Extending the idea of specific rates, Xu (1999) presented specific rates of glucose consumption for the oxidative pathway  and cell maintenance . Taking this into account, Eq(12) takes a different form
	
	(14)


Rearranging and dividing Eq(14) by the average specific growth rate  and the coefficient  yields
	
	(15)


where the summand relating to the total carbon content in off-gas and solutes turns into
	
	(16)


Combining Eq(15) and Eq(16) results in:
	
	(17)


In Eq(17), the carbon term for growth  of biomass has a different expression when maintenance energy is zero (Pirt, 1965). It relates to the aerobic yield coefficient  exclusive of maintenance, which is assumed constant throughout the process (Xu et al., 1999)
	
	(18)


where  is the total fed glucose. 


Joining Eq(17) and Eq(18) yields
	
	(19)


Assuming that the observed growth yield of cells  is inversely proportional to carbon balance terms
	
	(20)


concludes that the Pirt equation is a particular case of Eq(20) that does not account for the carbon content in solubles and off-gas carbon dioxide (Pirt, 1965):
	
	(21)


A simplified illustration of proposed model:
[image: ]
Figure 1: Simplified proposition of the paper – Pirt equation is a special case of the full carbon mass balance 
Glucose Estimation
The glucose concentration expression solved from Eq(10): 
	
	(22)


Numerical integration of Eq(22) leads to intermediate values of glucose concentration  :
	
	(23)


The final estimated form  is then dependent on a fuzzy rule
	
	(24)


where the logical condition assures the validity of the boundary condition, i.e., the computed glucose concentration is always non-negative.Experimental Verification
The mean absolute error (MAE) operated as evaluation criteria to compare glucose estimation results
	
	(25)


where the glucose concentration  had discrete values observed every 15-60 minutes during the cultivation process. The total number of samples  covered 5 experiments, of which 3 had growth-limiting feeding. The experimental data came from one site with Escherichia coli BL21(DE3) pETM-11+EGFP strain.
Figure 2 provides examples of linear regression models of the coefficient  for each experiment.[image: C:\Users\Benas\Desktop\BioData\AIDIC 2023\cx_age_juosta.tif]
Figure 2: Carbon content in grams per gram of biomass  dependence on average cell population age presenting slope, offset and  numerical values. 
The final model of glucose concentration used a shared set of fitted gain and slope parameters
	
	(26)


Experimental data had no information about the concentrations of secreted compounds in the culture medium. Therefore, an average ratio of carbon content cross-verified the hypothesis by using
	
	(27)


A decrease in the average ratio between the exhaust carbon and the carbon in the biomass itself implies that the remaining carbon accumulates in the growth medium. The terms in Eq(27) support this assumption by resulting in a correlation coefficient being 0.949. Hence, the estimation errors in Figure 3 represent accumulated byproducts with their total carbon content.
Table 1: The results of model fitting on experimental data
	Experiment No. 
	MAE,
g/L
	n
	Growth Type
	      
	, g/L 

	1
	0.621
	25
	Limiting
	1.765
	-0.622

	2
	1.434
	27
	
	2.725
	-0.06

	3
	0.927
	29
	
	2.376
	-0.927

	4
	3.967
	30
	Nonlimiting
	1.824
	-3.967

	5
	6.642
	60
	
	0.917
	-6.642
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Figure 3: Estimated and measured glucose concentrations for all five experiments.


Conclusions
[bookmark: _GoBack]The article presents a development of the Pirt equation considering the dynamical carbon balance in a fed-batch bioprocess. The newly introduced terms of carbon contents in off-gas and byproducts allowed us to advance to a complete mathematical model that models the glucose concentration during the bioprocess. Experimental data of five fed-batch bioprocesses, three growth-limited, verified the model, with glucose concentration estimation errors ranging from 0.6 to 6.7 g/L. The article also presents the discovered linear relationship between carbon content in grams per gram of biomass and the average age of the cell population, which reduces the model parameter count. A presented model verification criterion can also indicate the cellular metabolic pathway, thus allowing bioprocess operators to make appropriate decisions. The glucose estimation errors indicate that the model's current state requires further development. The lack of produced solubles measurements also affects the model's prediction accuracy, especially in non-limiting growth experiments. Overall, the described carbon balance hypothesis further expands the potential of off-gas for non-invasive estimation of bioprocess state variables. It is especially relevant when monitoring glucose concentration, where an adequate model eliminates or reduces the need for excessive sampling.
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