

VOL. 84, 2021



Guest Editors: Paolo Ciambelli, Luca Di Palma Copyright © 2021, AIDIC Servizi S.r.l. ISBN 978-88-95608-82-2; ISSN 2283-9216

# Efficient electrochemical nitrate reduction by bismuth nanosheets arrays *in-situ* grown on carbon cloth

## Miao Chen, Xin Huang , Hongxun Hao\*

National Engineering Research Center for Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China hongxunhao@tju.edu.cn

Excessive nitrate-containing in water pose great threat to the environment and public health. Tin as the nitrate promoter metal has been widely studied on the nitrate reduction reaction (NITRR), but it suffers unsatisfactory efficiency and unideal final-product selectivity at times. As the same main group metal as tin, bismuth have shown excellent performance in electrochemical reduction fields, but rarely focused on the NITRR performance. Here, the two-dimensional bismuth nanosheet in-situ grown on carbon cloth (Bi-CC) are designed and synthesized, which ensures the enlarged surface area and high electrical conductivity. The results showed that the nitrate removal efficiency reached to nearly 90% and the ammonia selectivity reached to 80% with none nitride generated as the final-product after 120 mins treatment of 10 mA cm<sup>-2</sup>. Investigations on the effect of reaction parameters (PH, current density, chlorine concentration) for the nitrate reduction indicated that the nitrate reduction was improved with low nitrite selectivity at acid PH and the current density of 10 mA cm<sup>-2</sup> presented the lowest energy consumption and satisfied NITRR efficiency, the presence of chlorine have no negative effect on the NITRR efficiency. The electrochemical analysis and scavenging experiments confirmed the mechanism of nitrate reduction are relying on the direct electron transfer and generated atomic H\* during the process. Besides, the NITRR performance of Bi-CC was also verified by actual garbage fly ash wastewater, efficient nitrate reduction and harmful metal removal are achieved in the actual industrial wastewater. This study provides a new kind of materials for converting the harmful nitrate in industrial wastewater to the valuable feedstock chemical ammonia in high efficiency.

## 1. Introduction

Nitrate  $(QR_6^0)$  contained in the wastewater is a worldwide concerning problem, since the easy transformation from  $QR_6^0$  to the harmful nitrite  $(QR_5^0)$  posed great theatre to human health, such as cancer, liver damage, and other health problems (Yao et al., 2019). Biological method, ion exchange, electrochemical reduction and other methods have been proposed to remove  $QR_6^0$  in the wastewater (Jonoush et al., 2020). However, most of them have more or less drawbacks in time-consuming, low target product selectivity, complex post-treatment procedures (Duan et al., 2019). Among them, electrochemical technology attracts most attentions with the advantages of simple operation and no chemical addition.

In QR<sub>6</sub><sup>0</sup> reduction process, QR<sub>5</sub><sup>0</sup>, nitrogen (N<sub>2</sub>), and ammonium (QK<sub>7</sub>) are the main reductive products. In past years, many efforts were devoted to converting QR<sub>6</sub><sup>0</sup> to N<sub>2</sub>, which is seen as a clean resource (Tokazhanov et al., 2020). Recently, a new concept of electrochemical QR<sub>6</sub><sup>0</sup> reduction reaction (NITRR) to QK<sub>7</sub> was put forward (Chen et al., 2020). In terms of N recycling, QK<sub>7</sub> belongs to the active nitrogen, and it plays an important role in industry and agriculture generation(Chen et al., 2019). In addition, it can be easily recycled from wastewater as magnesium ammonium phosphate (Demeestere et al., 2015).

Main group metal Sn has been seen as the promoter metal for  $QR_6^0$  reduction, but the high  $QR_2^0$  selectivity affects its wide application(Park et al., 2019). However, the same main group metal bismuth has rarely been studied on the NITRR performance. Compared to the metal Sn, bismuth is safer with lower cost, the spatially

anisotropic and s-p orbital hybridization indicate that bismuth can be seen as active centres(Xu et al., 2019). Thus, it is assumed as a kind of ideal catalyst for NITRR process.

Bismuth is known for its high electrical resistance at room temperature, which affect its catalytic efficiency (Cornelius et al., 2008). In traditional working electrode preparation, polymers are used for the fixation of catalysts on the conductive supporting. However, not only the polymer would be played as the conductivity binder, but also the catalysts could be easily agglomerated in this way, which reduced the exposed active sites. To decrease the electron transfer energy, *in-situ* grown catalyst on conductive supporting was proposed. Carbon cloth was chosen as the conductive supporting, which has been proved to be favourable for the  $QR_6^0$  adsorption for its high surface area (Afkhami et al., 2007).

In this work, bismuth nanosheets decorated on carbon cloth (Bi-CC) was designed and prepared by the *in-situ* topotactic transformation from the *in-situ* grown BiOCI nanosheets on carbon cloth (BiOCI-CC). And comparisons of the NITRR efficiency among different catalysts and comparative operation experiments (PH, current density, chlorine concentration) were carried out to study the catalytic activity of Bi-CC on the NITRR performance. More importantly, actual industrial wastewater was applied to verify the high NITRR efficiency of Bi-CC.

## 2. Materials and methods

## 2.1 Reagents and materials

Ethylene glycol (EG, 99.5%), potassium chloride (KCI, 99%),Bismuth nitrate pentahydrate (Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O, e98%), ethanol (C<sub>2</sub>H<sub>6</sub>O, 99.5%), sodium nitrate (NaNO<sub>3</sub>, e99%), sodium sulphate (Na<sub>2</sub>SO<sub>4</sub>, 99.99%) sulfuric acid (H<sub>2</sub>SO<sub>4</sub>, 98%), tert-butyl alcohol (TBA, 99%) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Carbon cloth (WOS1009) and nafion 117 membrane (Dupont) were purchased from Tianjin Allian Electronic Technology Co., Ltd. Ultrapure water was used throughout the experiments.

## 2.2 Synthesis of the catalyst

The synthesis of BiOCI-CC was through one-step hydrothermal. Firstly, carbon cloth ( $20*40 \text{ mm}^2$ ) was pretreated by sonicating in HNO<sub>3</sub>, acetone, ethanol for 60 mins respectively, dried at 60°C for 2 h. Then, 0.485 g Bi (NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O was dispersed in 6 mL EG and 12 mL ethanol stirring for 30 mins to form a transparent solution, 0.075 g KCl was added into the solution for anther 30mins stirring. Then, the pre-treated carbon cloth was immersed in the prepared solution for 4 h, and transferring the above solution to autoclave at 160°C for 5 h, in which carbon cloth kept vertical in the autoclave. Finally, washing the carbon cloth with ethanol and water respectively and vacuum freeze-dried for 6 h. The *in-situ* transformation of Bi-CC was achieved by the cyclic voltammetry (CV) scans (100 cycles) at the scan rate of 100 mV s<sup>-1</sup> from –0.8 V to 0 V vs. RHE.

The synthesis of the dropped Bi/CC was based on the following procedures. Firstly, the BiOCI was prepared by the typical hydrothermal procedure in previous study (Li et al., 2019). Then, 10 mg of the prepared BiOCI was put into the mixed solution of 0.1 mL Nafion and 1.9 mL ethanol. And the mixed solution was sonicated for 120 mins to form the catalyst inks, which was dropped onto the carbon cloth (10\*20 mm<sup>2</sup>). Finally, the BiOCI-CC was electrochemical reduced to the Bi-CC according to the above *in-situ* transformation procedures.

### 2.3 Material Characterization

The catalysts were examined by X-ray diffraction (XRD, Rigaku, Tokyo, Japan) with Cu-K $\pm$  radiation source ((» = 1.5418 Å) in the range of 10° to 70° at a scan rate of 8° min<sup>-1</sup>. Field emission scanning electron microscopy (FESEM, FEI, Apreo S LoVac, Czech Republic) was used to record the morphology of catalyst. N<sub>2</sub> isotherms was tested by the Quantachrome Autosorb-IQ, and the specific surface areas was calculated by the Brunauer-Emmett-Teller (BET) method.

## 2.4 Electrochemical measurements

In this system,  $IrO_2$ -RuO<sub>2</sub>/Ti and the prepared working electrode (10\*20 mm<sup>2</sup>) were used as the anode and cathode respectively. The H-type electrolytic cell dividing by the Nafion membrane was used for the electrochemical experiments with 30 mL of 0.5 M Na<sub>2</sub>SO<sub>4</sub> into the anode and cathode cell respectively. And 25 ppm QR<sub>6</sub><sup>0</sup> was added into the cathode cell. A DC potentiostat (DH1718E-3, Beijing Dahua Radio Instrument Co., Ltd, China) was used to supply constant current. The current density kept at 10 mA cm<sup>-2</sup> at room temperature during the experiments. All the experiments were carried out three times. The electrochemical workstation (CHI700E, Chenhua, Shanghai) was used for the CV tests. A saturated calomel electrode (SCE) was taken as the reference electrode, platinum electrode and the prepared electrode (10\*10 mm<sup>2</sup>) were taken as the counter electrode and working electrode respectively.

## 2.5 Analysis method

The concentrations of different ions ( $QR_5^0$ ,  $QR_6^0$ ,  $QK_7$ ) were determined by the UV-vis spectrophotometry. To evaluate the catalysts performance, the  $QR_6^0$  removal efficiency, the selectivity of  $QK_7$  ( $V_{QK_7}$ ) and  $QR_5^0$  ( $V_{QR_5^0}$ ) were calculated using the following equations:



Figure 2. (a) FESEM images of the BiOCI-CC at low scales; (b) FESEM images of the BiOCI-CC at high scales. (c) FESEM images of the Bi-CC.

The synthesis of Bi-CC was through cyclic voltammetry electroreduction, the XRD pattern shows that BiOCI nanosheets grown on carbon cloth surface are fully transformed to bismuth. The characteristic peaks are perfectly corresponding to hexagonal bismuth standard card (ICDD PDF#44-1246) and carbon cloth peaks (Figure 1). The FESEM image of Bi-CC shows that the *in-situ* grown nanosheets attaches on carbon cloth firmly after the CV operation (Figure 2c). And the BET surface area increased to 5.78 m<sup>2</sup>/g, which ensure the large surface area for supplying more reaction active sites.

#### 3.2 NITRR performance of different catalysts

The NITRR performance of different catalysts were test. As shown in Figure 3a, owing to the adsorption ability of carbon cloth, the  $QR_6^0$  removal efficiency reaches to 44.2%. When bismuth nanosheets are dropped on carbon cloth, the  $QR_6^0$  removal efficiency increases to 66.6%. Furthermore, when bismuth nanosheets are evenly distributed on carbon cloth, the  $QR_6^0$  removal efficiency reaches to nearly 90%. The above increased NITRR efficiency is due to that bismuth could donate electron for the  $QR_6^0$  reduction process. The *in-situ* grown nanosheets owns high surface area (Table 1), which exposed more active site for the NITRR process.



Figure 3. The NITRR efficiency of different catalysts: (a)residual  $QR_6^0$  concentration, (b)  $QK_7$  selectivity, (c)  $QR_5^0$  selectivity, (d) the  $QR_6^0$  concentration decay of Bi-CC with different electrolyte (Reaction conditions: current density 10 mA cm<sup>-2</sup>, PH=3.5±0.2 and 25 ppm initial concentration of  $QR_6^0$  for (a-d)).

The reductive products of NITRR process mainly focused on the  $QR_5^0$  and  $QK_7$ . In Figure 3b, the  $QK_7$  selectivity of all the catalysts increased during the experiments. Bi-CC presents the highest  $QK_7$  selectivity of 80.2%. In addition, the  $QR_5^0$  selectivity of carbon cloth is high, and the  $QR_5^0$  selectivity in bismuths-based catalysts firstly

increased and finally disappeared (Figure 3c). The above phenomena are due to that bismuth could donate electrons for the  $QR_6^0$  reduction. And the grown nanosheets present large surface area, and then exposed more active site for the NITRR process.

When different concentrations of TBA were added as H<sup>\*</sup> capture, the  $QR_6^0$  removal efficiency decreased a lot but still higher than the carbon cloth alone (Figure 3d). And there is no apparent difference in NITRR efficiency between the addition  $QR_6^0$  of 5 mM and 10 mM, which indicates that the hinder effect of H<sup>\*</sup> is completely. Therefore, direct electron transfer and generated atomic H<sup>\*</sup> benefit the NITRR process.

#### 3.3 Effect of the reaction parameters

In NITRR process, the hydrogen evolution reaction is the main competition reaction, and the consequent decrease of H<sup>+</sup> leads to the rise of electrolyte PH. Since PH has an important impact on the reductive production selectivity (Garcia-Segura et al., 2018), experiments were carried out at the stable pH of 3.5, 6.5, and 9.5, in which 0.1 M H<sub>2</sub>SO<sub>4</sub> was added into the electrolyte to stabilize the solution PH. As shown in Table 2, PH increase has little effect in NITRR efficiency, however the QK<sub>7</sub> selectivity decreased a lot at high PH and QR<sub>5</sub><sup>0</sup> becomes the main reductive products.

The NITRR performance of the catalyst is significantly influenced by the current density. The  $QR_6^0$  removal efficiency was enhanced as the current density increased (Table 2). And complete  $QR_6^0$  removal was achieved at the current density of 20 mA cm<sup>-2</sup>. However, the  $QK_7$  selectivity slightly decreased as the current density increased from 10 mA cm<sup>-2</sup> to 20 mA cm<sup>-2</sup>. The enhanced NITRR efficiency is due to the increased electrons makes more substance changes on the electrode surface. The reduced selectivity is because of the further conversion of  $QR_6^0$  to N<sub>2</sub> (Yao et al., 2019). In addition, the lowest energy consumption is 28.32 kwh/kgNO<sub>3</sub>-N at 10 mA cm<sup>-2</sup>.

| Reaction parameters                       |     | QR <sub>6</sub> <sup>0</sup> removal efficiency | Selectivity of $QK_7$ | Selectivity of QR <sub>5</sub> <sup>0</sup> |
|-------------------------------------------|-----|-------------------------------------------------|-----------------------|---------------------------------------------|
| PH                                        | 3.5 | 90%                                             | 80.2%                 | 0                                           |
|                                           | 6.5 | 88.3%                                           | 62.1%                 | 11.3%                                       |
|                                           | 9.5 | 86.3%                                           | 20.8%                 | 48.5%                                       |
| Current density<br>(mA cm <sup>-2</sup> ) | 5   | 66.8%                                           | 30.7%                 | 12.5%                                       |
|                                           | 10  | 90%                                             | 80.2%                 | 0                                           |
|                                           | 20  | 100%                                            | 70.6%                 | 0                                           |
| Concentration of Cl <sup>-</sup><br>(g/L) | 0.5 | 89.1%                                           | 76.1%                 | 0                                           |
|                                           | 1   | 92.5%                                           | 72.3%                 | 0                                           |
|                                           | 2   | 95.3%                                           | 68.2%                 | 0                                           |

Table 2: The  $QR_6^0$  removal efficiency and the  $QK_7$  selectivity of Bi-CC under different reaction conditions.

The effect of Cl<sup>-</sup> concentration on NITRR performance was investigated. As shown in Table 2, When the addition of Cl<sup>-</sup> increases from 0.5 g/L to 2 g/L, the QR<sub>6</sub><sup>0</sup> removal efficiency promotes a little with the QK<sub>7</sub> selectivity decreases. The primary reason may be that the Cl<sup>-</sup> will be oxidized to Cl<sub>2</sub> and the generated Cl<sub>2</sub> will be react with H<sub>2</sub>O forming hypochlorite. The generation of hypochlorite will further react with QK<sub>7</sub> to N<sub>2</sub>. Therefore, the existence of Cl<sup>-</sup> contributes to the NITRR process, and more QK<sub>7</sub> will be converted to N<sub>2</sub>.

#### 3.4 Treatment of the actual industrial wastewater

The NITRR performance of Bi-CC was tested by the garbage fly ash washing wastewater. As shown in Table 3, the concentration of  $QR_6^0$  decreases from 75.5 mg/L to 18.1 mg/L after the six hours treatment at the current density of 10 mA cm<sup>-2</sup>. Compared to the previous study (Yang et al., 2020), Bi-CC presents satisfactory NITRR efficiency.

Table 3: Variation of the active nitrogen in the garbage flying wastewater before and after the treatment of the Bi-CC, using the current density of 10mA cm<sup>-2</sup> over 6 h operation.

|         | PH  | Concentration of QR <sub>6</sub><br>(mg/L) | Concentration of<br>QK <sub>7</sub> <sup>+</sup> (mg/L) | QR <sup>0</sup> <sub>6</sub> removal efficiency |
|---------|-----|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------|
| Initial | 6.3 | 75.5                                       | 19.4                                                    | /                                               |
| End     | 3.5 | 18.1                                       | 25.3                                                    | 76%                                             |

The concentration of  $QK_7^+$  increases from 19.4 ppm to 25.3 ppm, the results indicates that most of the  $QR_6^0$  are eventually reduced to  $QK_7^+$ . In conclusion, Bi-CC shows high potential for converting  $QR_6^0$  in industrial wastewater treatment to valuable  $QK_7^+$ .

#### 4. Conclusions

In this study, two-dimensional bismuth nanosheets decorated on carbon cloth was proposed for NITRR process, in which the  $QR_6^0$  removal efficiency reaches to nearly 90% and the  $QK_7^+$  selectivity reaches to nearly 80% after 120 mins treatment at the current density of 10 mA cm<sup>-2</sup>. The effect of reaction parameters on the  $QR_6^0$  reduction is carried out, the results shows that the change of PH has little effect on the NITRR efficiency, complete  $QR_6^0$  removal was achieved at the current density of 20 mA cm<sup>-2</sup>, and the presence of Cl<sup>-</sup> is favourable for the NITRR process. More importantly, when applied to the garbage fly ash wastewater, the Bi-CC shows high potential in the effective  $QR_6^0$  removal for industrial wastewater treatment.

### Acknowledgments

This research is financially supported by National Natural Science Foundation of China (No. 21908159).

### References

- Afkhami, A., Madrakian, T. and Karimi, Z. 2007. The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. J Hazard Mater 144(1-2), 427-431.
- Chen, G.-F., Yuan, Y., Jiang, H., Ren, S.-Y., Ding, L.-X., Ma, L., Wu, T., Lu, J. and Wang, H. 2020. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy.
- Chen, G.F., Ren, S.Y., Zhang, L.L., Cheng, H., Luo, Y.R., Zhu, K.H., Ding, L.X. and Wang, H.H. 2019. Advances in Electrocatalytic N-2 Reduction-Strategies to Tackle the Selectivity Challenge. Small Methods 3(6), 20.
- Cornelius, T.W., Toimil-Molares, M.E., Karim, S. and Neumann, R. 2008. Oscillations of electrical conductivity in single bismuth nanowires. Physical Review B 77(12).
- Demeestere, K., Smet, E., Van Langenhove, H. and Galbacs, Z. 2015. Optimalisation of Magnesium Ammonium Phosphate Precipitation and its Applicability to the Removal of Ammonium. Environmental Technology 22(12), 1419-1428.
- Duan, W., Li, G., Lei, Z., Zhu, T., Xue, Y., Wei, C. and Feng, C. 2019. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Res 161, 126-135.
- Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. and Westerhoff, P. 2018. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental 236, 546-568.
- Jonoush, Z.A., Rezaee, A. and Ghaffarinejad, A. 2020. Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies. Journal of Cleaner Production 242.
- Li, L., Tang, C., Xia, B., Jin, H., Zheng, Y. and Qiao, S.-Z. 2019. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catalysis 9(4), 2902-2908.
- Park, J., Hwang, Y. and Bae, S. 2019. Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites. J Hazard Mater 374, 309-318.
- Tokazhanov, G., Ramazanova, E., Hamid, S., Bae, S. and Lee, W. 2020. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review. Chemical Engineering Journal 384.
- Xu, K., Wang, L., Xu, X., Dou, S.X., Hao, W. and Du, Y. 2019. Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Materials 19, 446-463.
- Yang, M., Wang, J., Shuang, C. and Li, A. 2020. The improvement on total nitrogen removal in nitrate reduction by using a prepared CuO-Co3O4/Ti cathode. Chemosphere 255, 126970.
- Yao, F., Yang, Q., Zhong, Y., Shu, X., Chen, F., Sun, J., Ma, Y., Fu, Z., Wang, D. and Li, X. 2019. Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. Water Res 157, 191-200.