Study of oxidation and degradation mechanisms of ZrSe₂ in ambient conditions

Kimberly Intonti^{1,2}, Hazel Neill³, Vilas Patil³, Lida Ansari³, Sharieh Jamalzadeh³, Paul K. Hurley^{3,4}, Antonio Di Bartolomeo¹ and Farzan Gity³

- ¹ Department of Physics "E. R. Caianiello", University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
- ^{2.} CNR-SPIN Salerno, via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
- 3. Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
- ^{4.} School of Chemistry, University College Cork, Cork, Ireland

Recently, there has been increased interest in Zr-based transition metal dichalcogenides (TMDs) as potential silicon substitutes in electronics. Similar to silicon, $ZrSe_2$ is a semiconductor with a bandgap of roughly 1 eV in bulk that rises to 1.5 when reduced to monolayer. ZrO_2 , the native oxide of $ZrSe_2$, has a bandgap of 5.3 eV and is a member of the so-called "high-k" insulators, which have been replacing SiO_2 recently due to their higher dielectric constant. This suggests that $ZrSe_2/ZrO_2$ may create a semiconductor/insulator couple similar to Si/SiO_2 , with the advantage that it can be reduced to few layers [1]. Moreover, because $ZrSe_2$ has a native oxide, compatibility issues with the deposited oxides are reduced because it does not require a distinct metal dielectric. This makes it even more favorable than MoS_2 and Black Phosophorus [2]. To fully benefit from all these features and achieve a smooth TMD/oxide interaction, it is crucial to first fully understand how the oxidation process appears.

In this study we present a systematic examination of ZrSe₂ surfaces in air using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) on specific flakes during a 30-day period. It's interesting to note that SEM significantly alters the ZrSe₂ surface's texture, preventing the development of hemispherically shaped protrusions on it, which were observed, instead, on aged flakes that were not previously scanned. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) offered a deeper understanding of the nature of the surface protrusions that result to be Se-rich, as observed for other selenium-based 2D materials [3]. Raman spectroscopy also provided valuable insights into the evolution of the degradation process, that appears to be not self-limiting. In the end, our density functional theory simulations revealed how ZrSe₂ interacts with air molecules and which features are the most effective nucleation sites for molecules' adsorption.

To prevent the ZrSe₂ degradation, we suggested an encapsulating strategy. Raman spectroscopy verified that, under various circumstances, our encapsulation approach has been successful in preventing the ZrSe₂ reaction with the environment. Therefore, field effect transistors have been fabricated with both Ni/Au and Cr/Au metal contacts on encapsulated flakes. Preliminary current -voltage measurements results are here reported and can be considered a first valuable stage towards the improvement of ZrSe₂-based devices.

Acknowledgements

P.K.H., L.A., V.P. and F.G. acknowledge the financial support from Science Foundation Ireland AMBER Research Centre (SFI-12/RC/2278_P2). H.N. acknowledges funding through Irish Research Council (IRC) EPSPG/2023/1772 project. The SFI/HEA Irish Centre for High-End Computing (ICHEC) is acknowledged for the provision of computational facilities and support.

References

- [1] Mleczko, M.J. *et al.* (2017). HfSe 2 and ZrSe 2: Two-dimensional semiconductors with native high-κ oxides. *Science Advances*. https://doi.org/10.1126/sciadv.1700481.
- [2] Sritharan, M. *et al.* (2024). A comparative study on 2D materials with native high-κ oxides for sub-10 nm transistors. *Materials Today Electronics*. https://doi.org/10.1016/j.mtelec.2024.100096.
- [3] Mirabelli, G. *et al.* (2016). Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. *Journal of Applied Physics*. https://doi.org/10.1063/1.4963290.