NINETEENTH2025 – Abstract: Electrical and Optoelectronic Properties of WS₂/PdSe₂ Heterostructures

Loredana Viscardi, Andres Castellanos-Gomez, and Antonio Di Bartolomeo

In the last decades, two-dimensional (2D) materials have been widely studied. 2D materials exhibit promising features like absence of dangling bonds, strong light-matter interaction and bandgap tunability, which make them ideal candidates for electronic and optoelectronic applications. In this context, the development of van der Waals (vdW) heterostructures has been a significant turning point in materials science and nanotechnology, leading to the realization of devices with superior performance. Tungsten disulfide (WS₂) presents low carrier mobility, which ranges from 0.01 to 5 cm² V⁻¹ s⁻¹ passing from ambient conditions to high vacuum, while palladium diselenide (PdSe₂) presents high electron and hole mobilities, up to 297 and 244 cm² V⁻¹ s⁻¹, respectively, in ambient conditions and 749 and 97 cm² V⁻¹ s⁻¹, in high vacuum. ^{1,2}

Firstly, prepatterned Si/SiO₂ substrates with Cr/Au electrodes were prepared through a lithography process and subsequent thermal evaporation for the deposition of metals. High-quality flakes were mechanically exfoliated by bulk crystals of WS₂ and PdSe₂.³ The transfer of a WS₂ flake on a prepatterned substrate was followed by the alignment and transfer of the PdSe₂ flake. PdSe₂-based field-effect transistors (FETs) exhibit ambipolar conduction with limier on/off ratio, whereas devices based on WS₂/PdSe₂ heterojunctions exhibit n-type conduction with high carrier mobility up to approximately 100 cm² V⁻¹ s⁻¹ and on to off current ratios on the order of 10⁷-10⁸.

Adsorbates play a crucial role on the electrical properties of the $WS_2/PdSe_2$ heterostructures; its role is deeply investigated and explained. Specifically, electrical measurements were first conducted in ambient pressure and then in high vacuum, at a pressure of around 1 x 10^{-4} mbar; moreover, the reversibility of the pressure-dependent process was analyzed by repeating and comparing the set of measurements in ambient conditions again. Additionally, the photoconductivity of the $WS_2/PdSe_2$ heterostructure is deeply investigated, evidencing the evolution as a function of pressure from 1000 to 10^{-4} mbar, and from 10^{-4} to 1000 mbar. The air-vacuum-air analysis, in dark and light conditions, shows the reversibility of the process of capture and release of adsorbates.

- (1) Pelella, A.; Intonti, K.; Durante, O.; Kumar, A.; Viscardi, L.; De Stefano, S.; Romano, P.; Giubileo, F.; Neill, H.; Patil, V.; Ansari, L.; Roycroft, B.; Hurley, P. K.; Gity, F.; Di Bartolomeo, A. Multilayer WS2 for Low-Power Visible and near-Infrared Phototransistors. *Discover Nano* **2024**, *19* (1), 57. https://doi.org/10.1186/s11671-024-04000-0.
- (2) Di Bartolomeo, A.; Pelella, A.; Liu, X.; Miao, F.; Passacantando, M.; Giubileo, F.; Grillo, A.; lemmo, L.; Urban, F.; Liang, S.-J. Pressure-Tunable Ambipolar Conduction and Hysteresis in Thin Palladium Diselenide Field Effect Transistors. *Advanced Functional Materials* **2019**, *29* (29), 1902483. https://doi.org/10.1002/adfm.201902483.
- (3) Castellanos-Gomez, A.; Duan, X.; Fei, Z.; Gutierrez, H. R.; Huang, Y.; Huang, X.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van Der Waals Heterostructures. *Nat Rev Methods Primers* **2022**, 2 (1), 1–19. https://doi.org/10.1038/s43586-022-00139-1.