1° telematic Workshop on the Developments in the Italian PhD Research on Food Science Technology and Biotechnology, University of Palermo, September 14th-15th, 2021

Functional and biotechnological characterization of selected *Lactobacillus* and *Bifidobacterium* strains for their application in dairy products conceived for specific categories of consumers

Margherita D'Alessandro (margheri.dalessandr3@unibo.it)

Department of Agricultural and Food Sciences, University of Bologna Campus of Cesena, Italy. Tutor: Prof. Francesca Patrignani, Co-Tutor: Prof. Rosalba Lanciotti, Prof. Lucia Vannini

INTRODUCTION AND AIM

During the last decades, the selection of tailored cultures has been developed in order to design functional foods, conceived as food strategy to increase the well-being of specific types of consumers.

In this framework, the first two years of research have been focused on the biotechnological and functional characterization of selected Lactobacillus and Bifidobacterium strains, isolated from breast milk and vagina of healthy women to include them into foods designed for infants and women in order to deliver specific functionalities (A). Another aim of my work was to evaluate the potential of spray-drying as a technological approach to vehiculate selected strains into specific functional foods (B).

		A)	MATERIALS	AND METHODS
	Strains	Species	Isolation source	Microen
	BC1, BC3, BC4, BC5, BC6, BC7, BC8	L. crispatus	Female genital tract	
	BC9, BC10, BC11, BC12, BC13, BC14,	L. gasseri	Female genital tract	
	BC16, BC17	L. vaginalis	Female genital tract	
	3.6D, 11.3 C, M6C, 29.0L, 31.0 C	L. plantarum	Breast milk	Lac
	32.0 C, 33.1 G, 34.0 B, 35.0 B.bis, 30 b6A	L. plantarum	Breast milk	
	32.0 A, 34.0 C, g.1, CFl11	L. gasseri	Breast milk	Cell surv
	32.0 B.bis	B. longum	Breast milk	dryi
	BL6	B. longum	Breast milk	
	METABOLIC POTENTIAL:	Biolog phenotype mi	croarray analysis [1]	

B)

Microencapsulation by spray-drying on mixed cultures

Lactobacillus gasseri

SAFETY ASPECTS: antagonistic activity, **antibiotic** susceptibility [2] **FUNCTIONALITY:** hydrophobicity, auto-aggregation, Caco-2 cells, simulated **digestion process** [1]

Fig. 3 A. Antagonistic activity of selected strains vs. pathogens

Most of these strains showed the highest antagonistic activity (inhibition 6-10 mm) vs.: *L. monocytogenes Scott A, E. coli 555, S. aureus DSM 20231, E. coli ECET H10407, S. enterica and Y. enterocolitica. Only L.gasseri BC11-BC12, L. vaginalis BC11 and B. longum 32.0 B.bis showed the lowest inhibitory activity (\leq 6-1 mm) vs. *S. aureus* **DSM 20231**

As regards to **FUNCTIONAL PARAMETERS**, most of these strains have demonstrated high values of hydrophobicity and auto-aggregation (over 70%) and good resistance to digestion process, considering *L. rhamnosus* GG as reference (*data not showed*)

Fig. 1 B. Cell loads (log UFC/g) of *L. crispatus* BC1 + *L. gasseri* BC9 microencapsulated after 7, 14, 30, 90, 365 days of storage (RT, +4 ° C and -20 ° C).

Fig. 2 B. Cell hydrophobicity of pre and post spray-drying samples.

Fig. 3 B. SEM images of microparticles of *L. crispatus* BC1 + *L. gasseri* BC9 :

On the other hand, strains from breast milk have revealed higher values of adhesiveness than vaginal strains

Strains	Isolation source	Adhesion (lb. cells/Caco-2 cell)
BC1, BC3, BC4, BC5, BC6, BC7, BC8	Vaginal tract	0.63; 0.45; 0.24; 0.43; 0.74; 5.14
BC9, BC10, BC11, BC12, BC13, BC14,	Vaginal tract	0.26; 0.27; 0.75; 0.15
BC16, BC17	Vaginal tract	0.34; 2.32
3.6D, 11.3 C, M6C, 29.0L; 31.0C	Breast milk	22.88; 14.29; 25.71; 34.18; 24.71
32.0 C, 33.1 G, 34.0 B, 35.0 B.bis, 30 b6A	Breast milk	21.17; 20.18; 28.70; 17.11;24.84
32.0 A, 34.0 C, g.1, CFl11	Breast milk	14.68; 27.73; 13.94; 4.39
32.0 B.bis	Breast milk	22.52
BL6	Breast milk	13.7

Future goal of my third-year PhD : Production of functional foods, including dairy, for infants and women, characterized also for their interaction on specific microbiome using human model systems.

a) at x 5000 magnification, b) at x 1000 magnification

Fig. 4 B. Cell loads (log UFC/g) of *L. crispatus* BC1+*L. gasseri* BC9 unencapsulated and microencapsulated after stomach-duodenum passage.

References:[1] D'Alessandro, M., Parolin, C., Bukvicki, D., Siroli, L., Vitali, B., De Angelis, M., & Patrignani, F. (2021). Probiotic and Metabolic Characterization of Vaginal Lactobacilli for a Potential Use in Functional Foods. Microorganisms, 9(4), 833. [2] Siroli, L., Patrignani, F., Serrazanetti, D. I., Parolin, C., Ñahui Palomino, R. A., Vitali, B., & Lanciotti, R. (2017). Determination of antibacterial and technological properties of vaginal lactobacilli for their potential application in dairy products. Frontiers in Microbiology, 8, 166.