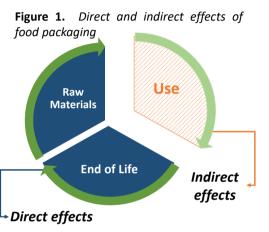
Eco-Design for Food Packaging as a Result of Its Properties and Performances


Valeria Frigerio (valeria.frigerio@unimi.it)

Dept. Food, Environmental and Nutritional Sciences, University of Milan, Italy Tutor: Prof. Sara Limbo

Introduction

- The requirements for more sustainable packaging options have led to the necessity of eco-design.
- Food packaging sustainability is often associated with end-of-life issues such as lack of recyclability.
- Recent researches highlighted the importance of packaging performances related to food waste reduction, i.e. thanks to shelf life extension (Licciardello, 2017)

An empirical-based model intended to evaluate the different contributions of packaging into environmental impacts of food-packaging systems is still lacking (Coffigniez *et al.*, 2021).

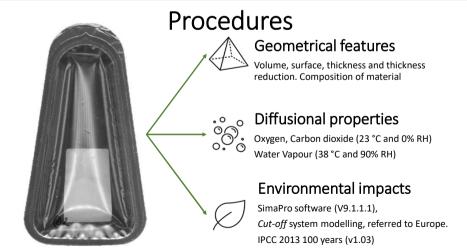
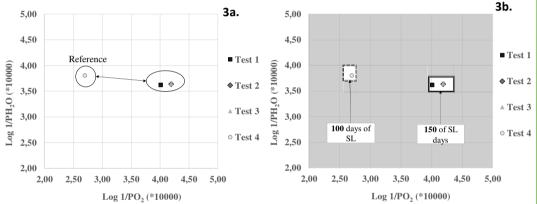



Figure 2. Methods of Ph.D. project

PET/EVOH barrier film/APET + R-PET (1); BOPET/PET + R-PET (2); BOPET/BOPET + R-PET (3); OPA/PE + PET/EVOH/PE (4, ref.). Each containing 200g of P.D.O. Grana Padano cheese.

Results

Figure 3. Gas resistance ratio $(O_2; H_2O)$ for the different packaging solutions (a); Expected shelf-life windows based on maximum GTR tolerances for original and thermoformed solutions (b)

Table 1. Environmental impacts for 100 pieces of tray-lid solutions correctedper FLW value (adapted from Conte et al., 2015)

Sample	Expected Shelf Life (Days)	Cheese (*100p)	Packaging (*100p)	Total Impact (*100p)	FLP	PFLEI	WEI _{exp. SL}	ΔWEI
		(kg CO ₂ equivalents)				(kg CO ₂ equivalents)		
1	150	206	2,3	208,3	8%	16,5	18,8	-346%
2	150	206	2,2	208,2	8%	16,5	18,7	-348%
3	150	206	2,1	208,1	8%	16,5	18,6	-351%
4	100	206	4,3	210,3	39%	79,7	83,9	0%

References

- Frigerio V (2020) Life Cycle Thinking: a new scientific approach to prevent food wastage through sustainable packaging solutions (SaveFoodPack). Proceedings of the Workshop on the PhD Research in Food Systems. Università degli studi di Milano (Italy). 14-18 September 2020, pp.12-14.
- Coffigniez F, Matar C, Gaucel S, Gontard N, Guilbert S and Guillard V (2021) The Use of Modeling Tools to Better Evaluate the Packaging Benefice on Our Environment. Frontiers in Sustainable Food Systems 5: 634038.
- Conte A, Cappelletti GM, Nicoletti GM, Russo C and Del Nobile MA (2015) Environmental implications of food loss probability in packaging design. Food Research International 78, pp. 11–17.
- Licciardello F (2017) Packaging, blessing in disguise. Review on its diverse contribution to food sustainability, Trends in Food Science and Technology 65, pp. 32–39.