Biotechnological valorisation of residues and by-products from agro-food industries

Beatrice Cellini (<u>beatrice.cellini2@unibo.it</u>) Dept. of Agricultural and Food Sciences, *Alma Mater Studiorum* - University of Bologna, Cesena, Italy Tutor: Prof. Lucia Vannini Co-tutor: Dr. Giorgia Gozzi

State of the art

- 8 Food processing industry problem → generation and management of high quantities of wastes & by-products
- 8 By-products → undervalued substrates rich in functional and bioactive components [1]
- 8 Possible valorisation strategies → i) recovery/extraction of valuable components; ii) bioprocessing into value-added products by selected microorganisms
- 8 Food industry need→ extend food shelf-life and satisfy consumers' demand for safe, healthy and fresh-like foods

PhD Thesis Objectives & Milestones

- ♦ Agro-food by-products characterisation → functional properties, i.e. antimicrobial, antioxidant, prebiotic activity
- ♦ Selection of yeasts and LAB strains for fermentation processes → increase of the by-products' bioactivity
- Use of the functional by-products
- \rightarrow as food **functional ingredients**
- → as components of active edible coatings

Main PhD project activities according to the Gantt diagram:

- A1) Functional characterization of the by-products for:
 - I) prebiotic, antioxidant and antimicrobial activities
 - II) technological features, e.g. gelling, foaming and water binding capacity
- A2) Yeasts/LAB strain selection and **by-products valorisation through fermentation** processes
- A3) **Food formulation with functional by-products:** evaluation over storage of the effects on microbiological, quality, nutritional and functional properties of foods
- A4) Production of active edible coatings:
 - I) films formulation by inclusion of the functional by-product(s);
 - II) films characterisation for their chemico-physical properties
- A5) **Tests on foods coated with the active edible films:** packaging of different categories with the developed material and analyses over storage. Shelf-life assessment and comparison with uncoated foods/reference conventional packaging
- A6) Writing and Editing of the PhD thesis, scientific papers and poster\oral communications

	Activity/ Month	2	4	6	8	10	12	14	16	18	20	22	24
Al)	Functional characterization of the by-products												
	 Antimicrobial/antifungal activity 												
	Antioxidant activity												
	3) Prebiotic activity												
	 Technological feature analysis 												
A2)	By-products valorisation through microbial												
_	fermentation												
A3)	Food formulation with functional by-products												
	1) Soft cheese												
	2) Fermented milk												
	3) Bakery product												
A4)	Production of active edible coatings												
	 Active edible coating formulation 												
	2) Technological characterization												
	3) Functional characterization												
A5)	Tests on foods coated with the active edible films												
	1) Meat product(s)												
	2) Fruits and vegetables												
	3) Bakery product												
A6)	Thesis and Paper Preparation												

Reference:

[1] Mejri F, Selmi S, Martins A, Benkhoud H, Baati T, Chaabane H, Nijm L, Serralheiro MLM, Rauter AP, Hosni K (2018) Broad bean (Vicia faba L.) pods: a rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct 9(4): 2051–2069.